DELILAH

Rembark

DNA Test Report

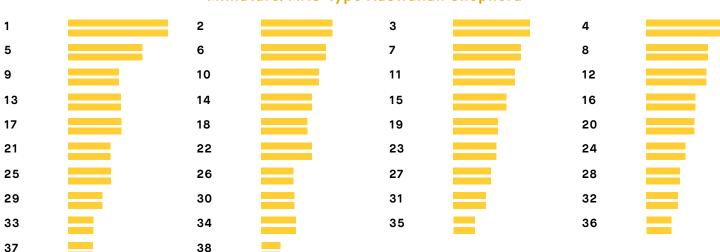
Test Date: November 26th, 2024

embk.me/delilah1768

BREED ANCESTRY

Miniature/MAS-type Australian Shepherd : 100.0%

GENETIC STATS


Predicted adult weight: **15 lbs** Life stage: **Puppy** Based on your dog's date of birth provided.

TEST DETAILS

Kit number: EM-42359698 Swab number: 31220910807012

BREED ANCESTRY BY CHROMOSOME

Our advanced test identifies from where Delilah (Lilly) inherited every part of the chromosome pairs in her genome.

Breed colors: Miniature/MAS-type Australian Shepherd

DELILAH

DNA Test Report

Test Date: November 26th, 2024

embk.me/delilah1768

embark

MINIATURE/MAS-TYPE AUSTRALIAN SHEPHERD

The Miniature American Shepherd descends directly from the Australian Shepherd, the 17th most popular dog in the United States. Despite their name, the Australian Shepherd originated from the ranches of the United States around the 1800s, with the Miniature American Shepherd bred from smaller individuals starting in the 1970s. Like Australian Shepherds, these dogs are known for their trainability, intelligence and energy. Miniature American Shepherds are outstanding agility dogs, striving for the approval of their owner. This group of shepherds contains some dogs that are their own AKC group ("Miniature American Shepherds") as well as other dogs whose breeders and owners have chosen not to join the MAS AKC club and still prefer to be called Miniature Australian Shepherds, or simply Australian Shepherds.

Alternative Names

Miniature Australian Shepherd, Australian Shepherd

Fun Fact

Like their big brothers the Australian Shepherds, Miniature American Shepherds sport a range of coat colors and eye colors - sometimes one dog may even have multicolored eyes! They sometimes even have naturally short (bobbed) tails!

DELILAH

Rembark

DNA Test Report

Test Date: November 26th, 2024

embk.me/delilah1768

MATERNAL LINE

Through Delilah (Lilly)'s mitochondrial DNA we can trace her mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

HAPLOGROUP: B1

B1 is the second most common maternal lineage in breeds of European or American origin. It is the female line of the majority of Golden Retrievers, Basset Hounds, and Shih Tzus, and about half of Beagles, Pekingese and Toy Poodles. This lineage is also somewhat common among village dogs that carry distinct ancestry from these breeds. We know this is a result of B1 dogs being common amongst the European dogs that their conquering owners brought around the world, because nowhere on earth is it a very common lineage in village dogs. It even enables us to trace the path of (human) colonization: Because most Bichons are B1 and Bichons are popular in Spanish culture, B1 is now fairly common among village dogs in Latin America.

HAPLOTYPE: B61

Part of the large B1 haplogroup, this haplotype occurs most commonly in Australian Cattle Dogs. It's a rare find!

DELILAH

DNA Test Report

Test Date: November 26th, 2024

TRAITS: COAT COLOR

TRAIT

E Locus (MC1R)

The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive e variant do not produce dark hairs and will express a red pigment called pheomelanin over their entire body. The shade of red, which can range from a deep copper to white, depends on other genetic factors, including the Intensity loci. In addition to determining if a dog can develop dark hairs, the E Locus can give a dog a black "mask" or "widow's peak" unless the dog has overriding coat color genetic factors.

Dogs with one or two copies of the E^m variant may have a melanistic mask (dark facial hair as commonly seen in the German Shepherd Dog and Pug). In the absence of E^m, dogs with the E^g variant can have a "grizzle" phenotype (darker color on the head and top with a melanistic "widow's peak" and a lighter underside, commonly seen in the Afghan Hound and Borzoi and also referred to as "domino"). In the absence of both E^m and E variants, dogs with the E^a or E^h variants can express the grizzle phenotype. Additionally, a dog with any combination of two of the E^g, E^a, or E^h variants (example: E^gE^a) is also expected to express the grizzle phenotype.

K Locus (CBD103)

The K Locus K^B allele "overrides" the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the K^B allele is referred to as the "dominant black" allele. As a result, dogs with at least one K^B allele will usually have solid black or brown coats (or red/cream coats if they are ee at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog's coat and cause other patterns, such as white spotting. Dogs with the $\mathbf{k}^{\mathbf{y}}\mathbf{k}^{\mathbf{y}}$ genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as K^Bk^y may be brindle rather than black or brown.

More likely to have a patterned haircoat $(k^{y}k^{y})$

embk.me/delilah1768

Can have a melanistic

mask (E^mE)

RESULT

DELILAH

DNA Test Report

Test Date: November 26th, 2024

embk.me/delilah1768

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Intensity Loci

Areas of a dog's coat where dark (black or brown) pigment is not expressed either contain red/yellow pigment, or no pigment at all. Five locations across five chromosomes explain approximately 70% of red pigmentation "intensity" variation across all dogs. Dogs with a result of **Intense Red Pigmentation** will likely have deep red hair like an Irish Setter or "apricot" hair like some Poodles, dogs with a result of **Intermediate Red Pigmentation** will likely have tan or yellow hair like a Soft-Coated Wheaten Terrier, and dogs with **Dilute Red Pigmentation** will likely have cream or white hair like a Samoyed. Because the mutations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test.

Any light hair likely yellow or tan (Intermediate Red Pigmentation)

A Locus (ASIP)

The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not **ee** at the E Locus and are **k**^y**k**^y at the K Locus. Sable (also called "Fawn") dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called "Wolf Sable") dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

Black/Brown and tan coat color pattern (a^ta)

D Locus (MLPH)

The D locus result that we report is determined by three different genetic variants that can work together to cause diluted pigmentation. These are the common **d** allele, also known as "**d1**", and the less common alleles known as "**d2**" and "**d3**". Dogs with two **d** alleles, regardless of which variant, will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that in certain breeds, dilute dogs have a higher incidence of Color Dilution Alopecia. Dogs with one **d** allele will not be dilute, but can pass the **d** allele on to their puppies.

Dark areas of hair and skin are not lightened (DD)

Fembark

RESULT

DELILAH

DNA Test Report

Test Date: November 26th, 2024

embk.me/delilah1768

TRAITS: COAT COLOR (CONTINUED)

TRAIT RESULT Cocoa (HPS3) Dogs with the coco genotype will produce dark brown pigment instead of black in both their hair and skin. No co alleles, not Dogs with the **Nco** genotype will produce black pigment, but can pass the **co** allele on to their puppies. expressed (NN) Dogs that have the coco genotype as well as the bb genotype at the B locus are generally a lighter brown than dogs that have the **Bb** or **BB** genotypes at the B locus. **B Locus (TYRP1)** Dogs with two copies of the **b** allele produce brown pigment instead of black in both their hair and skin. Black or gray hair and Dogs with one copy of the **b** allele will produce black pigment, but can pass the **b** allele on to their puppies. skin (BB) E Locus ee dogs that carry two b alleles will have red or cream coats, but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red". Saddle Tan (RALY) The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Likely saddle tan Beagle, and German Shepherd. Dogs that have the II genotype at this locus are more likely to be mostly patterned (NI) black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus at allele, so dogs that do not express at are not influenced by this gene. S Locus (MITF)

The S Locus determines white spotting and pigment distribution. MITF controls where pigment is produced, and an insertion in the MITF gene causes a loss of pigment in the coat and skin, resulting in white hair and/or pink skin. Dogs with two copies of this variant will likely have breed-dependent white patterning, with a nearly white, parti, or piebald coat. Dogs with one copy of this variant will have more limited white spotting and may be considered flash, parti or piebald. This MITF variant does not explain all white spotting patterns in dogs and other variants are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their S Locus genotype.

Likely to have little to no white in coat (SS)

Registration:

DELILAH

DNA Test Report

Test Date: November 26th, 2024

embk.me/delilah1768

embark

TRAITS: COAT COLOR (CONTINUED)

TRAIT

M Locus (PMEL)

Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an **M*m** result are likely to be phenotypically merle or could be "non-expressing" merle, meaning that the merle pattern is very subtle or not at all evident in their coat. Dogs with an **M*M*** result are likely to be phenotypically merle. Dogs with an **mm** result have no merle alleles and are unlikely to have a merle coat pattern.

Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions.

R Locus (USH2A)

The R Locus regulates the presence or absence of the roan coat color pattern. Partial duplication of the USH2A gene is strongly associated with this coat pattern. Dogs with at least one **R** allele will likely have roaning on otherwise uniformly unpigmented white areas. Roan appears in white areas controlled by the S Locus but not in other white or cream areas created by other loci, such as the E Locus with **ee** along with Dilute Red Pigmentation by I Locus (for example, in Samoyeds). Mechanisms for controlling the extent of roaning are currently unknown, and roaning can appear in a uniform or non-uniform pattern. Further, non-uniform roaning may appear as ticked, and not obviously roan. The roan pattern can appear with or without ticking.

Likely no impact on coat pattern (rr)

H Locus (Harlequin)

This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an **Hh** result will be harlequin if they are also **M*m** or **M*M*** at the M Locus and are not **ee** at the E locus. Dogs with a result of **hh** will not be harlequin. This trait is thought to be homozygous lethal; a living dog with an **HH** genotype has never been found.

No harlequin alleles (hh)

One merle allele; may express merle (M*m)

RESULT

Note: This locus includes several alleles. At the time this dog was genotyped Embark we could not distinguish all of the possible alleles.

DELILAH

DNA Test Report

Test Date: November 26th, 2024

embk.me/delilah1768

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Panda White Spotting

Panda White Spotting originated in a line of German Shepherd Dogs and causes a mostly symmetrical white spotting of the head and/or body. This is a dominant variant of the KIT gene, which has a role in pigmentation.

Dogs with one copy of the I allele will exhibit this white spotting. Dogs with two copies of the I allele have never been observed, as two copies of the variant is suspected to be lethal to the developing embryo. Dogs with the **NN** result will not exhibit white spotting due to this variant.

Not expected to display Panda pattern (NN)

DELILAH

DNA Test Report

Test Date: November 26th, 2024

embk.me/delilah1768

RESULT

TRAITS: OTHER COAT TRAITS

TRAIT

Furnishings (RSPO2)

Dogs with one or two copies of the **F** allele have "furnishings": the mustache, beard, and eyebrows characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two **I** alleles will not have furnishings, which is sometimes called an "improper coat" in breeds where furnishings are part of the breed standard. The mutation is a genetic insertion which we measure indirectly using a linkage test highly correlated with the insertion.

Likely unfurnished (no mustache, beard, and/or eyebrows) (II)

DELILAH

DNA Test Report

Test Date: November 26th, 2024

embk.me/delilah1768

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Coat Length (FGF5)

The FGF5 gene affects hair length in many species, including cats, dogs, mice, and humans. In dogs, an **Lh** allele confers a long, silky hair coat across many breeds, including Yorkshire Terriers, Cocker Spaniels, and Golden Retrievers, while the **Sh** allele causes a shorter coat, as seen in the Boxer or the American Staffordshire Terrier. In certain breeds, such as the Pembroke Welsh Corgi and French Bulldog, the long haircoat is described as "fluffy". The coat length determined by FGF5, as reported by us, is influenced by four genetic variants that work together to promote long hair.

The most common of these is the **Lh1** variant (G/T, CanFam3.1, chr32, g.4509367) and the less common ones are **Lh2** (C/T, CanFam3.1, chr32, g.4528639), **Lh3** (16bp deletion, CanFam3.1, chr32, g.4528616), and **Lh4** (GG insertion, CanFam3.1, chr32, g.4528621). The FGF5_Lh1 variant is found across many dog breeds. The less common alleles, FGF5_Lh2, have been found in the Akita, Samoyed, and Siberian Husky, FGF5_Lh3 have been found in the Eurasier, and FGF5_Lh4 have been found in the Afghan Hound, Eurasier, and French Bulldog.

The **Lh** alleles have a recessive mode of inheritance, meaning that two copies of the **Lh** alleles are required to have long hair. The presence of two Lh alleles at any of these FGF5 loci is expected to result in long hair. One copy each of **Lh1** and **Lh2** have been found in Samoyeds, one copy each of **Lh1** and **Lh3** have been found in Eurasiers, and one copy each of **Lh1** and **Lh4** have been found in the Afghan Hounds and Eurasiers.

Interestingly, the Lh3 variant, a 16 base pair deletion, encompasses the Lh4 variant (GG insertion). The presence of one or two copies of Lh3 influences the outcome at the Lh4 locus. When two copies of Lh3 are present, there will be no reportable result for the FGF5_Lh4 locus. With one copy of Lh3, Lh4 can have either one copy of the variant allele or the normal allele. The overall FGF5 result remains unaffected by this.

RESULT

Likely long coat (LhLh)

DELILAH

DNA Test Report

Test Date: November 26th, 2024

embk.me/delilah1768

RESULT

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Shedding (MC5R)

Dogs with at least one copy of the ancestral **C** allele, like many Labradors and German Shepherd Dogs, are heavy or seasonal shedders, while those with two copies of the **T** allele, including many Boxers, Shih Tzus and Chihuahuas, tend to be lighter shedders. Dogs with furnished/wire-haired coats caused by RSPO2 (the furnishings gene) tend to be low shedders regardless of their genotype at this gene.

Likely heavy/seasonal shedding (CC)

Coat Texture (KRT71)

Dogs with a long coat and at least one copy of the **T** allele have a wavy or curly coat characteristic of Poodles and Bichon Frises. Dogs with two copies of the ancestral **C** allele are likely to have a straight coat, but there are other factors that can cause a curly coat, for example if they at least one **F** allele for the Furnishings (RSPO2) gene then they are likely to have a curly coat. Dogs with short coats may carry one or two copies of the **T** allele but still have straight coats.

Likely straight coat (CC)

Hairlessness (FOXI3)

A duplication in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth
 shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and
 Chinese Crested (other hairless breeds have different mutations). Dogs with the NDup genotype are likely
 to be hairless while dogs with the NN genotype are likely to have a normal coat. The DupDup genotype has
 never been observed, suggesting that dogs with that genotype cannot survive to birth. Please note that
 this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Hairlessness (SGK3)

Hairlessness in the American Hairless Terrier arises from a mutation in the SGK3 gene. Dogs with the **DD** result are likely to be hairless. Dogs with the **ND** genotype will have a normal coat, but can pass the **D** variant on to their offspring.

Very unlikely to be hairless (NN)

DELILAH

DNA Test Report

Test Date: November 26th, 2024

embk.me/delilah1768

RESULT

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Oculocutaneous Albinism Type 2 (SLC45A2)

Dogs with two copies **DD** of this deletion in the SLC45A2 gene have oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion **ND** will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Likely not albino (NN)

DELILAH

DNA Test Report

Test Date: November 26th, 2024

embk.me/delilah1768

Likely medium or long

muzzle (AC)

RESULT

TRAITS: OTHER BODY FEATURES

TRAIT

Muzzle Length (BMP3)

Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral **C** allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived **A** allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science.

Tail Length (T)

Whereas most dogs have two **C** alleles and a long tail, dogs with one **G** allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with the **GG** genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail.

Hind Dewclaws (LMBR1)

Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with at least one copy of the **T** allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some **CC** or **TC** dogs will have hind dewclaws.

Unlikely to have hind dew claws (CC)

Likely normal-length

tail (CC)

DELILAH

DNA Test Report

Test Date: November 26th, 2024

embk.me/delilah1768

RESULT

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT

Chondrodysplasia (Chr. 18 FGF4 Retrogene)

Dogs with one or two copies of the I allele will exhibit a short-legged trait known as chondrodysplasia (CDPA). CDPA is a breed-defining characteristic of many breeds exhibiting the "short-legged, longbodied" appearance known as disproportionate dwarfism, including the corgi, dachshund and basset hound. The impact of the I allele on leg length is additive. Therefore, dogs with the II result display the largest reduction in leg length. Dogs with the NI genotype will have an intermediate leg length, while dogs with the NN result will not exhibit leg shortening due to this variant. Breeds that display disproportionate dwarfism also frequently inherit a genetic variant known as the chondrodystrophy (CDDY) variant. The CDDY variant also shortens legs (in a less significant amount than CDPA) but, secondarily, increases the risk of Type I Intervertebral Disc Disease (IVDD). Test results for CDDY are listed in this dog's health testing results under "Intervertebral Disc Disease (Type I)". In contrast, the CDPA variant has NOT been shown to increase the risk of IVDD.

Not indicative of chondrodysplasia (normal leg length) (NN)

Blue Eye Color (ALX4)

Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the duplication (Dup) are more likely to have at least one blue eye. Some dogs with the duplication may have only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. NN dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Likely to have blue eyes or partial blue eyes (NDup)

Back Muscling & Bulk, Large Breed (ACSL4)

The T allele is associated with heavy muscling along the back and trunk in characteristically "bulky" largebreed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The "bulky" T allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral C allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.

Likely normal muscling (CC)

DELILAH

DNA Test Report	Test Date: November 26th, 2024	embk.me/delilah1768
TRAITS: BODY SIZE		
TRAIT		RESULT
Body Size (IGF1)		Smaller (II)
The I allele is associated with smaller body size.		
Body Size (IGFR1)		Intermediate (GA)
The A allele is associated with smaller body size	».	interineulate (GA)
Body Size (STC2)		Smaller (AA)
The A allele is associated with smaller body size).	
Body Size (GHR - E191K)		Smoller (AA)
The A allele is associated with smaller body size	.	Smaller (AA)
Body Size (GHR - P177L)		Larger (CC)
The T allele is associated with smaller body size		Laiger (00)

DELILAH

DNA Test Report

Test Date: November 26th, 2024

embk.me/delilah1768

TRAITS: PERFORMANCE

measure this result using a linkage test.

TRAIT	RESULT
Altitude Adaptation (EPAS1)	
This mutation causes dogs to be especially tolerant of low oxygen environments (hypoxia), such as those found at high elevations. Dogs with at least one A allele are less susceptible to "altitude sickness." This mutation was originally identified in breeds from high altitude areas such as the Tibetan Mastiff.	Normal altitude tolerance (GG)
Appetite (POMC)	
This mutation in the POMC gene is found primarily in Labrador and Flat Coated Retrievers. Compared to dogs with no copies of the mutation (NN), dogs with one (ND) or two (DD) copies of the mutation are more likely to have high food motivation, which can cause them to eat excessively, have higher body fat percentage, and be more prone to obesity. Read more about the genetics of POMC, and learn how you can contribute to research, in our blog post (https://embarkvet.com/resources/blog/pomc-dogs/). We	Normal food motivation (NN)

DELILAH

DNA Test Report

Test Date: November 26th, 2024

embk.me/delilah1768

HEALTH REPORT

How to interpret Delilah (Lilly)'s genetic health results:

If Delilah (Lilly) inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Delilah (Lilly) for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

Summary

Of the 274 genetic health risks we analyzed, we found 1 result that you should learn about.

Notable results (1)

Copper Toxicosis (Accumulating)

Clear results

Breed-relevant (12)

Other (260)

DELILAH

Fembark

DNA	Test	Report	t
	1000	report	•

Test Date: November 26th, 2024

embk.me/delilah1768

BREED-RELEVANT RESULTS

Research studies indicate that these results are more relevant to dogs like Delilah (Lilly), and may influence her chances of developing certain health conditions.

Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2)	Clear
Collie Eye Anomaly (NHEJ1)	Clear
Craniomandibular Osteopathy, CMO (SLC37A2)	Clear
O Day Blindness (CNGB3 Deletion, Alaskan Malamute Variant)	Clear
Hereditary Ataxia (PNPLA8, Australian Shepherd Variant)	Clear
Hereditary Cataracts (HSF4 Exon 9, Australian Shepherd Variant)	Clear
Multiple Drug Sensitivity (ABCB1)	Clear
Neuronal Ceroid Lipofuscinosis 6, NCL 6 (CLN6 Exon 7, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8, Australian Shepherd Variant)	Clear
Primary Ciliary Dyskinesia, PCD (STK36, Australian Shepherd Variant)	Clear
Progressive Retinal Atrophy, prcd (PRCD Exon 1)	Clear
Urate Kidney & Bladder Stones (SLC2A9)	Clear

Registration: American Kennel Club (AKC)

DELILAH

DNA Test Report

Test Date: November 26th, 2024

embk.me/delilah1768

OTHER RESULTS

Research has not yet linked these conditions to dogs with similar breeds to Delilah (Lilly). Review any increased risk or notable results to understand her potential risk and recommendations.

O Copper Toxicosis (Accumulating) (ATP7B)	Notable
2-DHA Kidney & Bladder Stones (APRT)	Clear
Acral Mutilation Syndrome (GDNF-AS, Spaniel and Pointer Variant)	Clear
Alaskan Husky Encephalopathy (SLC19A3)	Clear
Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP)	Clear
Alexander Disease (GFAP)	Clear
ALT Activity (GPT)	Clear
Anhidrotic Ectodermal Dysplasia (EDA Intron 8)	Clear
Autosomal Dominant Progressive Retinal Atrophy (RHO)	Clear
Bald Thigh Syndrome (IGFBP5)	Clear
Bernard-Soulier Syndrome, BSS (GP9, Cocker Spaniel Variant)	Clear
Bully Whippet Syndrome (MSTN)	Clear
Canine Elliptocytosis (SPTB Exon 30)	Clear
Canine Fucosidosis (FUCA1)	Clear
Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant)	Clear
Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)	Clear
Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant)	Clear
Canine Multifocal Retinopathy, cmr3 (BEST1 Exon 10 Deletion, Finnish and Swedish Lapphund, Lapponian Herder Variant)	Clear

DELILAH

DNA Test Report	Test Date: November 26th, 2024	embk.me/delilah1768
OTHER RESULTS		
Canine Multiple System Degeneration (SI	ERAC1 Exon 4, Chinese Crested Variant)	Clear
Canine Multiple System Degeneration (SI	ERAC1 Exon 15, Kerry Blue Terrier Variant)	Clear
Cardiomyopathy and Juvenile Mortality (Y	(ARS2)	Clear
Centronuclear Myopathy, CNM (PTPLA)		Clear
🔗 Cerebellar Hypoplasia (VLDLR, Eurasier Va	ariant)	Clear
Chondrodystrophy (ITGA10, Norwegian El	khound and Karelian Bear Dog Variant)	Clear
Cleft Lip and/or Cleft Palate (ADAMTS20,	Nova Scotia Duck Tolling Retriever Variant)	Clear
Cleft Palate, CP1 (DLX6 intron 2, Nova Sco	otia Duck Tolling Retriever Variant)	Clear
Ocbalamin Malabsorption (CUBN Exon 8,	Beagle Variant)	Clear
Ocbalamin Malabsorption (CUBN Exon 53	, Border Collie Variant)	Clear
Omplement 3 Deficiency, C3 Deficiency	(C3)	Clear
Ongenital Cornification Disorder (NSDHL	., Chihuahua Variant)	Clear
Ongenital Dyserythropoietic Anemia and	Polymyopathy (EHPB1L1, Labrador Retriever Variant)	Clear
Ongenital Hypothyroidism (TPO, Rat, Toy	, Hairless Terrier Variant)	Clear
🔗 Congenital Hypothyroidism (TPO, Tenterfi	eld Terrier Variant)	Clear
Ongenital Hypothyroidism with Goiter (T	PO Intron 13, French Bulldog Variant)	Clear
Ongenital Hypothyroidism with Goiter (S	SLC5A5, Shih Tzu Variant)	Clear
Ongenital Macrothrombocytopenia (TUE	B1 Exon 1, Cairn and Norfolk Terrier Variant)	Clear

Registration: American Kennel Club (AKC)

DELILAH

DNA Test Report	Test Date: November 26th, 2024	embk.me/delilah1768
OTHER RESULTS		
Ocongenital Muscular Dystrophy (LAMA2,	Italian Greyhound)	Clear
Ongenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant)	Clear
Ongenital Myasthenic Syndrome, CMS (COLQ, Golden Retriever Variant)	Clear
Ongenital Myasthenic Syndrome, CMS (CHAT, Old Danish Pointing Dog Variant)	Clear
Ongenital Myasthenic Syndrome, CMS (CHRNE, Jack Russell Terrier Variant)	Clear
Ocongenital Stationary Night Blindness (L	RIT3, Beagle Variant)	Clear
Ocongenital Stationary Night Blindness (R	PE65, Briard Variant)	Clear
Opper Toxicosis (Attenuating) (ATP7A, L	abrador Retriever)	Clear
Opper Toxicosis (Attenuating) (RETN, La	brador Retriever)	Clear
🔗 Craniomandibular Osteopathy, CMO (SLC	37A2 Intron 16, Basset Hound Variant)	Clear
🔗 Cystinuria Type I-A (SLC3A1, Newfoundla	nd Variant)	Clear
🔗 Cystinuria Type II-A (SLC3A1, Australian C	Cattle Dog Variant)	Clear
🔗 Cystinuria Type II-B (SLC7A9, Miniature P	inscher Variant)	Clear
Oarier Disease (ATP2A2, Irish Terrier Varia	ant)	Clear
Day Blindness (CNGA3 Exon 7, German St	nepherd Variant)	Clear
Day Blindness (CNGA3 Exon 7, Labrador F	etriever Variant)	Clear
Day Blindness (CNGB3 Exon 6, German S	horthaired Pointer Variant)	Clear
Deafness and Vestibular Syndrome of Do	bermans, DVDob, DINGS (MYO7A)	Clear

Registration: American Kennel Club (AKC)

DELILAH

DNA Test Report	Test Date: November 26th, 2024	embk.me/delilah1768
OTHER RESULTS		
O Degenerative Myelopathy, DM (SOD1A)		Clear
Ø Demyelinating Polyneuropathy (SBF2/M)	TRM13)	Clear
Oental-Skeletal-Retinal Anomaly (MIA3,	Cane Corso Variant)	Clear
Diffuse Cystic Renal Dysplasia and Hepa	tic Fibrosis (INPP5E Intron 9, Norwich Terrier Variant)	Clear
Dilated Cardiomyopathy, DCM (RBM20, S	Schnauzer Variant)	Clear
Dilated Cardiomyopathy, DCM1 (PDK4, Do	oberman Pinscher Variant 1)	Clear
Dilated Cardiomyopathy, DCM2 (TTN, Do	berman Pinscher Variant 2)	Clear
Disproportionate Dwarfism (PRKG2, Dog	o Argentino Variant)	Clear
Ory Eye Curly Coat Syndrome (FAM83H E	xon 5)	Clear
Oystrophic Epidermolysis Bullosa (COL7.	A1, Central Asian Shepherd Dog Variant)	Clear
Oystrophic Epidermolysis Bullosa (COL7.	A1, Golden Retriever Variant)	Clear
Searly Bilateral Deafness (LOXHD1 Exon 3)	8, Rottweiler Variant)	Clear
Early Onset Adult Deafness, EOAD (EPS8)	L2 Deletion, Rhodesian Ridgeback Variant)	Clear
🧭 Early Onset Cerebellar Ataxia (SEL1L, Fin	nish Hound Variant)	Clear
Schlers Danlos (ADAMTS2, Doberman Pin	scher Variant)	Clear
Schlers-Danlos Syndrome (EDS) (COL5A1	, Labrador Retriever Variant)	Clear
Senamel Hypoplasia (ENAM Deletion, Itali	an Greyhound Variant)	Clear
🔗 Enamel Hypoplasia (ENAM SNP, Parson F	Russell Terrier Variant)	Clear

Registration: American Kennel Club (AKC)

DELILAH

DNA Test Report	Test Date: November 26th, 2024	embk.me/delilah1768
OTHER RESULTS		
Episodic Falling Syndrome (BCAN)		Clear
Exercise-Induced Collapse, EIC (DNM1)	Clear
Sactor VII Deficiency (F7 Exon 5)		Clear
Sactor XI Deficiency (F11 Exon 7, Kerry B	Blue Terrier Variant)	Clear
Samilial Nephropathy (COL4A4 Exon 3,	Cocker Spaniel Variant)	Clear
Samilial Nephropathy (COL4A4 Exon 30), English Springer Spaniel Variant)	Clear
🔗 Fanconi Syndrome (FAN1, Basenji Varia	ant)	Clear
Setal-Onset Neonatal Neuroaxonal Dys	trophy (MFN2, Giant Schnauzer Variant)	Clear
Glanzmann's Thrombasthenia Type I (I	TGA2B Exon 13, Great Pyrenees Variant)	Clear
Glanzmann's Thrombasthenia Type I (I	TGA2B Exon 12, Otterhound Variant)	Clear
Globoid Cell Leukodystrophy, Krabbe d	isease (GALC Exon 5, Terrier Variant)	Clear
Glycogen Storage Disease Type IA, Vor	n Gierke Disease, GSD IA (G6PC1, German Pinscher Variant)	Clear
Glycogen Storage Disease Type IA, Vor	n Gierke Disease, GSD IA (G6PC, Maltese Variant)	Clear
Glycogen Storage Disease Type IIIA, GS	SD IIIA (AGL, Curly Coated Retriever Variant)	Clear
Glycogen storage disease Type VII, Pho and English Springer Spaniel Variant)	osphofructokinase Deficiency, PFK Deficiency (PFKM, Whippet	Clear
Glycogen storage disease Type VII, Pho Wachtelhund Variant)	osphofructokinase Deficiency, PFK Deficiency (PFKM,	Clear
GM1 Gangliosidosis (GLB1 Exon 2, Port	uguese Water Dog Variant)	Clear
GM1 Gangliosidosis (GLB1 Exon 15, Shi	ba Inu Variant)	Clear

Registration: American Kennel Club (AKC)

DELILAH

DNA Test Report	Test Date: November 26th, 2024	embk.me/delilah1768
OTHER RESULTS		
🧭 GM1 Gangliosidosis (GLB1 Exon 15, Alasl	kan Husky Variant)	Clear
🧭 GM2 Gangliosidosis (HEXA, Japanese Ch	nin Variant)	Clear
GM2 Gangliosidosis (HEXB, Poodle Varia	nt)	Clear
Golden Retriever Progressive Retinal At	rophy 1, GR-PRA1 (SLC4A3)	Clear
Golden Retriever Progressive Retinal At	rophy 2, GR-PRA2 (TTC8)	Clear
Goniodysgenesis and Glaucoma, Pectin	ate Ligament Dysplasia, PLD (OLFM3)	Clear
🔗 Hemophilia A (F8 Exon 11, German Shep	herd Variant 1)	Clear
🔗 Hemophilia A (F8 Exon 1, German Sheph	erd Variant 2)	Clear
Hemophilia A (F8 Exon 10, Boxer Variant)	Clear
Hemophilia B (F9 Exon 7, Terrier Variant)		Clear
Hemophilia B (F9 Exon 7, Rhodesian Rid	geback Variant)	Clear
🔗 Hereditary Ataxia, Cerebellar Degenerat	on (RAB24, Old English Sheepdog and Gordon Setter Variant)	Clear
Hereditary Cataracts (FYCO1, Wirehaired	l Pointing Griffon Variant)	Clear
Hereditary Cerebellar Ataxia (SELENOP, I	Belgian Shepherd Variant)	Clear
Hereditary Footpad Hyperkeratosis (FAN	183G, Terrier and Kromfohrlander Variant)	Clear
Hereditary Footpad Hyperkeratosis (DSC	61, Rottweiler Variant)	Clear
Hereditary Nasal Parakeratosis (SUV39F	12 Intron 4, Greyhound Variant)	Clear
🧭 Hereditary Nasal Parakeratosis, HNPK (S	UV39H2)	Clear

Registration: American Kennel Club (AKC)

DELILAH

DNA Test Report	Test Date: November 26th, 2024	embk.me/delilah1768
OTHER RESULTS		
Hereditary Vitamin D-Resistant Rickets	(VDR)	Clear
🔗 Hypocatalasia, Acatalasemia (CAT)		Clear
Hypomyelination and Tremors (FNIP2, W	eimaraner Variant)	Clear
🔗 Hypophosphatasia (ALPL Exon 9, Karelia	n Bear Dog Variant)	Clear
🔗 Ichthyosis (NIPAL4, American Bulldog Va	ariant)	Clear
Ichthyosis (ASPRV1 Exon 2, German She	pherd Variant)	Clear
Ichthyosis (SLC27A4, Great Dane Variant	:)	Clear
Ichthyosis, Epidermolytic Hyperkeratosi	s (KRT10, Terrier Variant)	Clear
Ichthyosis, ICH1 (PNPLA1, Golden Retrie	ver Variant)	Clear
Ichthyosis, ICH2 (ABHD5, Golden Retriev	ver Variant)	Clear
Inflammatory Myopathy (SLC25A12)		Clear
Inherited Myopathy of Great Danes (BIN	1)	Clear
Inherited Selected Cobalamin Malabsor	otion with Proteinuria (CUBN, Komondor Variant)	Clear
Intervertebral Disc Disease (Type I) (FGF	F4 retrogene - CFA12)	Clear
Intestinal Lipid Malabsorption (ACSL5, A	ustralian Kelpie)	Clear
🧭 Junctional Epidermolysis Bullosa (LAMA	3 Exon 66, Australian Cattle Dog Variant)	Clear
🧭 Junctional Epidermolysis Bullosa (LAMB	3 Exon 11, Australian Shepherd Variant)	Clear
Juvenile Epilepsy (LGI2)		Clear

Registration: American Kennel Club (AKC)

DELILAH

DNA Test Report	Test Date: November 26th, 2024	embk.me/delilah1768
OTHER RESULTS		
Juvenile Laryngeal Paralysis and Polyneuro	opathy (RAB3GAP1, Rottweiler Variant)	Clear
Juvenile Myoclonic Epilepsy (DIRAS1)		Clear
🔗 L-2-Hydroxyglutaricaciduria, L2HGA (L2HG	DH, Staffordshire Bull Terrier Variant)	Clear
S Lagotto Storage Disease (ATG4D)		Clear
🔗 Laryngeal Paralysis (RAPGEF6, Miniature E	Bull Terrier Variant)	Clear
 Laryngeal Paralysis and Polyneuropathy (C variant) 	NTNAP1, Leonberger, Saint Bernard, and Labrador Retriever	Clear
Late Onset Spinocerebellar Ataxia (CAPN1))	Clear
Late-Onset Neuronal Ceroid Lipofuscinosis	s, NCL 12 (ATP13A2, Australian Cattle Dog Variant)	Clear
Leonberger Polyneuropathy 1 (LPN1, ARHG	EF10)	Clear
Leonberger Polyneuropathy 2 (GJA9)		Clear
Lethal Acrodermatitis, LAD (MKLN1)		Clear
Leukodystrophy (TSEN54 Exon 5, Standard	Schnauzer Variant)	Clear
🔗 Ligneous Membranitis, LM (PLG)		Clear
SGCD, Bo Limb Girdle Muscular Dystrophy (SGCD, Bo	ston Terrier Variant)	Clear
SGCA Limb-Girdle Muscular Dystrophy 2D (SGCA	Exon 3, Miniature Dachshund Variant)	Clear
O Long QT Syndrome (KCNQ1)		Clear
Lundehund Syndrome (LEPREL1)		Clear
Macular Corneal Dystrophy, MCD (CHST6)		Clear

DELILAH

DNA Test Report	Test Date: November 26th, 2024	embk.me/delilah1768
OTHER RESULTS		
Ø Malignant Hyperthermia (RYR1)		Clear
May-Hegglin Anomaly (MYH9)		Clear
Medium-Chain Acyl-CoA Dehydro Variant)	ogenase Deficiency, MCADD (ACADM, Cavalier King Charles Spaniel	Clear
O Methemoglobinemia (CYB5R3, Pit	t Bull Terrier Variant)	Clear
Methemoglobinemia (CYB5R3)		Clear
Microphthalmia (RBP4 Exon 2, Sof	ft Coated Wheaten Terrier Variant)	Clear
Mucopolysaccharidosis IIIB, Sanfi	ilippo Syndrome Type B, MPS IIIB (NAGLU, Schipperke Variant)	Clear
 Mucopolysaccharidosis Type IIIA, Variant) 	Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, Dachshund	Clear
Mucopolysaccharidosis Type IIIA, Huntaway Variant)	Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, New Zealand	Clear
 Mucopolysaccharidosis Type VI, N Variant) 	Maroteaux-Lamy Syndrome, MPS VI (ARSB Exon 5, Miniature Pinsch	er Clear
Mucopolysaccharidosis Type VII, S	Sly Syndrome, MPS VII (GUSB Exon 3, German Shepherd Variant)	Clear
Mucopolysaccharidosis Type VII, S	Sly Syndrome, MPS VII (GUSB Exon 5, Terrier Brasileiro Variant)	Clear
Muscular Dystrophy (DMD, Cavalie	er King Charles Spaniel Variant 1)	Clear
Muscular Dystrophy (DMD, Golden	n Retriever Variant)	Clear
Muscular Dystrophy-Dystroglycan	nopathy (LARGE1, Labrador Retriever Variant)	Clear
Musladin-Lueke Syndrome, MLS (A	(ADAMTSL2)	Clear
O Myasthenia Gravis-Like Syndrome	e (CHRNE, Heideterrier Variant)	Clear
🔗 Myotonia Congenita (CLCN1 Exon	23, Australian Cattle Dog Variant)	Clear

DELILAH

DNA Test Report	Test Date: November 26th, 2024	embk.me/delilah1768
OTHER RESULTS		
🧭 Myotonia Congenita (CLCN1 Exon 19	, Labrador Retriever Variant)	Clear
🧭 Myotonia Congenita (CLCN1 Exon 7, I	Miniature Schnauzer Variant)	Clear
Narcolepsy (HCRTR2 Exon 1, Dachsh	und Variant)	Clear
Narcolepsy (HCRTR2 Intron 4, Dober	man Pinscher Variant)	Clear
Narcolepsy (HCRTR2 Intron 6, Labrad	dor Retriever Variant)	Clear
Nemaline Myopathy (NEB, American	Bulldog Variant)	Clear
Neonatal Cerebellar Cortical Degene	eration (SPTBN2, Beagle Variant)	Clear
Neonatal Encephalopathy with Seizu	ures, NEWS (ATF2)	Clear
⊘ Neonatal Interstitial Lung Disease (L	AMP3)	Clear
Neuroaxonal Dystrophy, NAD (VPS11,	Rottweiler Variant)	Clear
Neuroaxonal Dystrophy, NAD (TECPR	2, Spanish Water Dog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 1, NC	CL1 (PPT1 Exon 8, Dachshund Variant 1)	Clear
Neuronal Ceroid Lipofuscinosis 10, N	ICL 10 (CTSD Exon 5, American Bulldog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 2, NC	CL 2 (TPP1 Exon 4, Dachshund Variant 2)	Clear
Neuronal Ceroid Lipofuscinosis 5, NC	CL 5 (CLN5 Exon 4 SNP, Border Collie Variant)	Clear
Neuronal Ceroid Lipofuscinosis 5, NC	CL 5 (CLN5 Exon 4 Deletion, Golden Retriever Variant)	Clear
Neuronal Ceroid Lipofuscinosis 7, NC	EL7 (MFSD8, Chihuahua and Chinese Crested Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NC	CL 8 (CLN8 Exon 2, English Setter Variant)	Clear

Registration: American Kennel Club (AKC)

DELILAH

DNA Test Report	Test Date: November 26th, 2024	embk.me/delilah1768
OTHER RESULTS		
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 Insertion, Saluki Variant)	Clear
 Neuronal Ceroid Lipofuscinosis, Cerebella Variant) 	ar Ataxia, NCL4A (ARSG Exon 2, American Staffordshire Terrier	Clear
Oculocutaneous Albinism, OCA (SLC45A2	Exon 6, Bullmastiff Variant)	Clear
Oculocutaneous Albinism, OCA (SLC45A2	, Small Breed Variant)	Clear
Oculoskeletal Dysplasia 2 (COL9A2, Samo	yed Variant)	Clear
Osteochondrodysplasia (SLC13A1, Poodle	variant)	Clear
Osteogenesis Imperfecta (COL1A2, Beagl	e Variant)	Clear
Osteogenesis Imperfecta (SERPINH1, Dac	hshund Variant)	Clear
Osteogenesis Imperfecta (COL1A1, Golde	n Retriever Variant)	Clear
P2Y12 Receptor Platelet Disorder (P2Y12)		Clear
Pachyonychia Congenita (KRT16, Dogue o	le Bordeaux Variant)	Clear
Paroxysmal Dyskinesia, PxD (PIGN)		Clear
Persistent Mullerian Duct Syndrome, PMD	PS (AMHR2)	Clear
Pituitary Dwarfism (POU1F1 Intron 4, Karel	ian Bear Dog Variant)	Clear
Platelet Factor X Receptor Deficiency, Sco	ott Syndrome (TMEM16F)	Clear
Polycystic Kidney Disease, PKD (PKD1)		Clear
Pompe's Disease (GAA, Finnish and Swee	lish Lapphund, Lapponian Herder Variant)	Clear
Prekallikrein Deficiency (KLKB1 Exon 8)		Clear

Registration: American Kennel Club (AKC)

DELILAH

DNA Test Report	Test Date: November 26th, 2024	embk.me/delilah1768
OTHER RESULTS		
Primary Ciliary Dyskinesia, PCD (NME)	5, Alaskan Malamute Variant)	Clear
Primary Ciliary Dyskinesia, PCD (CCD	C39 Exon 3, Old English Sheepdog Variant)	Clear
Primary Hyperoxaluria (AGXT)		Clear
Primary Lens Luxation (ADAMTS17)		Clear
Primary Open Angle Glaucoma (ADAN	/ITS17 Exon 11, Basset Fauve de Bretagne Variant)	Clear
Primary Open Angle Glaucoma (ADAN	/TS10 Exon 17, Beagle Variant)	Clear
Primary Open Angle Glaucoma (ADAN	/TS10 Exon 9, Norwegian Elkhound Variant)	Clear
 Primary Open Angle Glaucoma and Pr Variant) 	rimary Lens Luxation (ADAMTS17 Exon 2, Chinese Shar-Pei	Clear
Progressive Retinal Atrophy (SAG)		Clear
Progressive Retinal Atrophy (IFT122 B	Exon 26, Lapponian Herder Variant)	Clear
Progressive Retinal Atrophy 5, PRA5	(NECAP1 Exon 6, Giant Schnauzer Variant)	Clear
Progressive Retinal Atrophy, Bardet-B	Biedl Syndrome (BBS2 Exon 11, Shetland Sheepdog Variant)	Clear
Progressive Retinal Atrophy, CNGA (C	NGA1 Exon 9)	Clear
Progressive Retinal Atrophy, crd1 (PD	E6B, American Staffordshire Terrier Variant)	Clear
Progressive Retinal Atrophy, crd4/con	rd1 (RPGRIP1)	Clear
Progressive Retinal Atrophy, PRA1 (C	NGB1)	Clear
Progressive Retinal Atrophy, PRA3 (Fr	AM161A)	Clear
Progressive Retinal Atrophy, rcd1 (PD	E6B Exon 21, Irish Setter Variant)	Clear

DELILAH

DNA Test Report	Test Date: November 26th, 2024	embk.me/delilah1768
OTHER RESULTS		
Progressive Retinal Atrophy, rcd3 (PDE6A)	Clear
Proportionate Dwarfism (GH1 Exon 5, Chil	nuahua Variant)	Clear
Protein Losing Nephropathy, PLN (NPHS1))	Clear
Pyruvate Dehydrogenase Deficiency (PDF	P1, Spaniel Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 5,	, Basenji Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7,	Beagle Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 10	D, Terrier Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7,	Labrador Retriever Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7,	Pug Variant)	Clear
Raine Syndrome (FAM20C)		Clear
Recurrent Inflammatory Pulmonary Diseas	se, RIPD (AKNA, Rough Collie Variant)	Clear
Renal Cystadenocarcinoma and Nodular I	Dermatofibrosis (FLCN Exon 7)	Clear
Retina Dysplasia and/or Optic Nerve Hypo	oplasia (SIX6 Exon 1, Golden Retriever Variant)	Clear
Sensory Neuropathy (FAM134B, Border Co	ollie Variant)	Clear
Severe Combined Immunodeficiency, SCI	D (PRKDC, Terrier Variant)	Clear
Severe Combined Immunodeficiency, SCI	D (RAG1, Wetterhoun Variant)	Clear
Shaking Puppy Syndrome (PLP1, English S	Springer Spaniel Variant)	Clear
Shar-Pei Autoinflammatory Disease, SPAII	D, Shar-Pei Fever (MTBP)	Clear

Registration: American Kennel Club (AKC)

DELILAH

DNA Test Report	Test Date: November 26th, 2024	embk.me/delilah1768
OTHER RESULTS		
Skeletal Dysplasia 2, SD2 (COL11A2, Labra	dor Retriever Variant)	Clear
Skin Fragility Syndrome (PKP1, Chesapeal	ke Bay Retriever Variant)	Clear
Spinocerebellar Ataxia (SCN8A, Alpine Da	chsbracke Variant)	Clear
Spinocerebellar Ataxia with Myokymia and	d/or Seizures (KCNJ10)	Clear
Spongy Degeneration with Cerebellar Ata	xia 1 (KCNJ10)	Clear
Spongy Degeneration with Cerebellar Ata	xia 2 (ATP1B2)	Clear
Stargardt Disease (ABCA4 Exon 28, Labrad	dor Retriever Variant)	Clear
Succinic Semialdehyde Dehydrogenase D	eficiency (ALDH5A1 Exon 7, Saluki Variant)	Clear
O Thrombopathia (RASGRP1 Exon 5, America	an Eskimo Dog Variant)	Clear
O Thrombopathia (RASGRP1 Exon 5, Basset	Hound Variant)	Clear
O Thrombopathia (RASGRP1 Exon 8, Landse	er Variant)	Clear
Trapped Neutrophil Syndrome, TNS (VPS1)	3B)	Clear
Ollrich-like Congenital Muscular Dystroph	y (COL6A3 Exon 10, Labrador Retriever Variant)	Clear
O Ullrich-like Congenital Muscular Dystroph	y (COL6A1 Exon 3, Landseer Variant)	Clear
O Unilateral Deafness and Vestibular Syndro	me (PTPRQ Exon 39, Doberman Pinscher)	Clear
⊘ Von Willebrand Disease Type I, Type I vWE	0 (VWF)	Clear
\oslash Von Willebrand Disease Type II, Type II vW	'D (VWF, Pointer Variant)	Clear
⊘ Von Willebrand Disease Type III, Type III v	ND (VWF Exon 4, Terrier Variant)	Clear

Registration: American Kennel Club (AKC)

DELILAH

DNA Test Report	Test Date: November 26th, 2024	embk.me/delilah1768
OTHER RESULTS		
🔗 Von Willebrand Disease Typ	pe III, Type III vWD (VWF Intron 16, Nederlandse Kooikerhondje Variant)	Clear
🔗 Von Willebrand Disease Typ	pe III, Type III vWD (VWF Exon 7, Shetland Sheepdog Variant)	Clear
⊘ X-Linked Hereditary Nephro	opathy, XLHN (COL4A5 Exon 35, Samoyed Variant 2)	Clear
🔗 X-Linked Myotubular Myopa	athy (MTM1, Labrador Retriever Variant)	Clear
⊘ X-Linked Progressive Retina	al Atrophy 1, XL-PRA1 (RPGR)	Clear
X-linked Severe Combined	Immunodeficiency, X-SCID (IL2RG Exon 1, Basset Hound Variant)	Clear
X-linked Severe Combined	Immunodeficiency, X-SCID (IL2RG, Corgi Variant)	Clear
🐼 Xanthine Urolithiasis (XDH,	Mixed Breed Variant)	Clear
🧭 β-Mannosidosis (MANBA E)	xon 16, Mixed-Breed Variant)	Clear
Mast Cell Tumor		No result
Desistration: American Kannel Club (AKO)		

Registration: American Kennel Club (AKC)

DELILAH

DNA Test Report

Test Date: November 26th, 2024

embk.me/delilah1768

embark

HEALTH REPORT

Ontable result

Copper Toxicosis (Accumulating)

Delilah inherited one copy of the variant we tested for Copper Toxicosis (Accumulating) Delilah (Lilly) is not known to be at increased risk for Copper Toxicosis (Accumulating)

What does this result mean?

We do not know whether this increases the risk that Delilah (Lilly) will develop Copper Toxicosis (Accumulating).

Scientific Basis

Research studies for this variant have been based on dogs of other breeds. Not enough dogs with Delilah (Lilly)'s breed have been studied to know whether or not this variant will increase Delilah (Lilly)'s risk of developing this disease.

Impact on Breeding

Research into the clinical impact of this variant is ongoing. We recommend tracking this genetic result and incidence of Copper Toxicosis (Accumulating) in your breeding program and related dogs.

What is Copper Toxicosis (Accumulating)?

Copper toxicosis is a condition in which affected dogs have difficulty excreting excess copper from their liver. The liver accumulates more copper until it eventually begins failing. Multiple genetic and environmental factors contribute to the development of this condition.

When signs & symptoms develop in affected dogs

Signs typically develop in adults.

How vets diagnose this condition

Genetic testing, blood work, abdominal ultrasound, and surgical biopsy are all used to diagnose this condition.

How this condition is treated

Treatment includes a low copper diet and medical management to help bind excess copper. Antioxidant supplements may also be considered.

Actions to take if your dog is affected

- Please consult your veterinarian for dietary advice and follow their recommendations for monitoring.
- Learn more about how the three variants for Copper Toxicosis are inherited and, if applicable, how results can be used in a breeding program here (https://embarkvet.com/resources/embark-adds-copper-toxicosis-dna-test/)

DELILAH

DNA Test Report

Test Date: November 26th, 2024

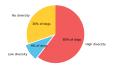
embk.me/delilah1768

RESULT

INBREEDING AND DIVERSITY

CATEGORY

Coefficient Of Inbreeding


Our genetic COI measures the proportion of your dog's genome where the genes on the mother's side are identical by descent to those on the father's side.

Your Dag's COI: 6%

Low Diversity


6%

How common is this amount of diversity in purebreds:

High Diversity

How common is this amount of diversity in purebreds:

MHC Class II - DLA DRB1

A Dog Leukocyte Antigen (DLA) gene, DRB1 encodes a major histocompatibility complex (MHC) protein involved in the immune response. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Addison's disease (hypoadrenocorticism) in certain dog breeds, but these findings have yet to be scientifically validated.

MHC Class II - DLA DQA1 and DQB1

DQA1 and DQB1 are two tightly linked DLA genes that code for MHC proteins involved in the immune response. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.

Fembark