

DNA Test Report

Test Date: May 5th, 2025

embk.me/ivy3194

BREED ANCESTRY

Australian Shepherd : 52.1%
Miniature/MAS-type Australian Shepherd : 47.9%

GENETIC STATS

Predicted adult weight: **23 lbs** Life stage: **Young adult** Based on your dog's date of birth provided.

TEST DETAILS

Kit number: EM-24737174 Swab number: 31240510107487

BREED ANCESTRY BY CHROMOSOME

Our advanced test identifies from where Ivy inherited every part of the chromosome pairs in her genome.

			Breed colors:			
	Austr	alian Shepherd	Miniature/MAS-typ	e Australian She	pherd	
1		2	3		4	
5		6	7		8	
9		10	11		12	
13		14	15		16	
17		18	19		20	
21		22	23		24	
25		26	27		28	
29		30	31	_	32	
33	-	34	35	=	36	
37	_	38				

Fun Fact

Australian Shepherds rose to popularity and fame as rodeo stars. After the first World War, people flocked to the west and to watch exhibitions that showcased these very talented canines. Test Date: May 5th, 2025

embk.me/ivy3194

AUSTRALIAN SHEPHERD

The Australian Shepherd, or Aussie, is the 17th most popular dog in the United States, and given their intelligence and temperament, it's no wonder they're so well-loved. Despite their name, the Australian Shepherd actually originated from the ranches of the United States around the 1800s. They are praised by stockmen and breeders for their trainability and intelligence. They have a medium build and a wide variation of different coat colors. Australian Shepherds have considerable energy and they usually need a job to do to keep themselves entertained, though they're also happy to spend time with the family and settle down at the end of the day. Australian Shepherds are often employed as guide dogs, rescue dogs, and therapy dogs. In addition to exercising an Aussie, it's equally important to keep their mind occupied, as if an an Australian Shepherd gets bored they do have the tendency to invent their own games or activities, which sometimes involve destructive behaviors. This is a breed that thrives on close companionship. Aussies are at times called "Velcro Dogs" for their tendency to stay close to their owner.

Test Date: May 5th, 2025

embk.me/ivy3194

embark

MINIATURE/MAS-TYPE AUSTRALIAN SHEPHERD

The Miniature American Shepherd descends directly from the Australian Shepherd, the 17th most popular dog in the United States. Despite their name, the Australian Shepherd originated from the ranches of the United States around the 1800s, with the Miniature American Shepherd bred from smaller individuals starting in the 1970s. Like Australian Shepherds, these dogs are known for their trainability, intelligence and energy. Miniature American Shepherds are outstanding agility dogs, striving for the approval of their owner. This group of shepherds contains some dogs that are their own AKC group ("Miniature American Shepherds") as well as other dogs whose breeders and owners have chosen not to join the MAS AKC club and still prefer to be called Miniature Australian Shepherds, or simply Australian Shepherds.

Alternative Names

Miniature Australian Shepherd, Australian Shepherd

Fun Fact

Like their big brothers the Australian Shepherds, Miniature American Shepherds sport a range of coat colors and eye colors - sometimes one dog may even have multicolored eyes! They sometimes even have naturally short (bobbed) tails!



DNA Test Report

Test Date: May 5th, 2025

embk.me/ivy3194

MATERNAL LINE

Through Ivy's mitochondrial DNA we can trace her mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A1e

This female lineage likely stems from some of the original Central Asian wolves that were domesticated into modern dogs starting about 15,000 years ago. It seemed to be a fairly rare dog line for most of dog history until the past 300 years, when the lineage seemed to "explode" out and spread quickly. What really separates this group from the pack is its presence in Alaskan village dogs and Samoyeds. It is possible that this was an indigenous lineage brought to the Americas from Siberia when people were first starting to make that trip themselves! We see this lineage pop up in overwhelming numbers of Irish Wolfhounds, and it also occurs frequently in popular large breeds like Bernese Mountain Dogs, Saint Bernards and Great Danes. Shetland Sheepdogs are also common members of this maternal line, and we see it a lot in Boxers, too. Though it may be all mixed up with European dogs thanks to recent breeding events, its origins in the Americas makes it a very exciting lineage for sure!

HAPLOTYPE: A427/A623

Part of the A1e haplogroup, the A427/A623 haplotype occurs most frequently in Australian Cattle Dogs, Border Collies, and Australian Shepherds.

...

DNA Test Report

embk.me/ivy3194

embark

TRAITS: COAT COLOR

TRAIT

E Locus (MC1R)

The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive **e** variant do not produce dark hairs and will express a red pigment called pheomelanin over their entire body. The shade of red, which can range from a deep copper to white, depends on other genetic factors, including the Intensity loci. In addition to determining if a dog can develop dark hairs, the E Locus can give a dog a black "mask" or "widow's peak" unless the dog has overriding coat color genetic factors.

Dogs with one or two copies of the E^m variant may have a melanistic mask (dark facial hair as commonly seen in the German Shepherd Dog and Pug). In the absence of E^m, dogs with the E^g variant can have a "grizzle" phenotype (darker color on the head and top with a melanistic "widow's peak" and a lighter underside, commonly seen in the Afghan Hound and Borzoi and also referred to as "domino"). In the absence of both E^m and E variants, dogs with the E^a or E^h variants can express the grizzle phenotype. Additionally, a dog with any combination of two of the E^g, E^a, or E^h variants (example: E^gE^a) is also expected to express the grizzle phenotype.

K Locus (CBD103)

The K Locus K^B allele "overrides" the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the K^B allele is referred to as the "dominant black" allele. As a result, dogs with at least one K^B allele will usually have solid black or brown coats (or red/cream coats if they are **ee** at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog's coat and cause other patterns, such as white spotting. Dogs with the $k^{y}k^{y}$ genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as $K^{B}k^{y}$ may be brindle rather than black or brown.

More likely to have a patterned haircoat (k^yk^y)

No dark mask or grizzle (EE)

RESULT

DNA Test Report

Test Date: May 5th, 2025

embk.me/ivy3194

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Intensity Loci

Areas of a dog's coat where dark (black or brown) pigment is not expressed either contain red/yellow pigment, or no pigment at all. Five locations across five chromosomes explain approximately 70% of red pigmentation "intensity" variation across all dogs. Dogs with a result of **Intense Red Pigmentation** will likely have deep red hair like an Irish Setter or "apricot" hair like some Poodles, dogs with a result of **Intermediate Red Pigmentation** will likely have tan or yellow hair like a Soft-Coated Wheaten Terrier, and dogs with **Dilute Red Pigmentation** will likely have cream or white hair like a Samoyed. Because the mutations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test.

Any light hair likely yellow or tan (Intermediate Red Pigmentation)

A Locus (ASIP)

The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not **ee** at the E Locus and are **k**^y**k**^y at the K Locus. Sable (also called "Fawn") dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called "Wolf Sable") dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

Black/Brown and tan coat color pattern (a^ta^t)

D Locus (MLPH)

The D locus result that we report is determined by three different genetic variants that can work together to cause diluted pigmentation. These are the common **d** allele, also known as "**d1**", and the less common alleles known as "**d2**" and "**d3**". Dogs with two **d** alleles, regardless of which variant, will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that in certain breeds, dilute dogs have a higher incidence of Color Dilution Alopecia. Dogs with one **d** allele will not be dilute, but can pass the **d** allele on to their puppies.

Dark areas of hair and skin are not lightened (DD)

DNA Test Report

Test Date: May 5th, 2025

embk.me/ivy3194

TRAITS: COAT COLOR (CONTINUED)

TRAIT RESULT Cocoa (HPS3) Dogs with the coco genotype will produce dark brown pigment instead of black in both their hair and skin. No co alleles, not Dogs with the **Nco** genotype will produce black pigment, but can pass the **co** allele on to their puppies. expressed (NN) Dogs that have the coco genotype as well as the bb genotype at the B locus are generally a lighter brown than dogs that have the **Bb** or **BB** genotypes at the B locus. **B Locus (TYRP1)** Dogs with two copies of the **b** allele produce brown pigment instead of black in both their hair and skin. Black or gray hair and Dogs with one copy of the **b** allele will produce black pigment, but can pass the **b** allele on to their puppies. skin (BB) E Locus ee dogs that carry two b alleles will have red or cream coats, but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red". Saddle Tan (RALY) The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Not saddle tan Beagle, and German Shepherd. Dogs that have the II genotype at this locus are more likely to be mostly patterned (II) black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus at allele, so dogs that do not express at are not influenced by this gene.

S Locus (MITF)

The S Locus determines white spotting and pigment distribution. MITF controls where pigment is produced, and an insertion in the MITF gene causes a loss of pigment in the coat and skin, resulting in white hair and/or pink skin. Dogs with two copies of this variant will likely have breed-dependent white patterning, with a nearly white, parti, or piebald coat. Dogs with one copy of this variant will have more limited white spotting and may be considered flash, parti or piebald. This MITF variant does not explain all white spotting patterns in dogs and other variants are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their S Locus genotype.

Likely to have little to no white in coat (SS)

embk.me/ivy3194

DNA Test Report

Test Date: May 5th, 2025

TRAITS: COAT COLOR (CONTINUED)

TRAIT

M Locus (PMEL)

Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an **M*m** result are likely to be phenotypically merle or could be "non-expressing" merle, meaning that the merle pattern is very subtle or not at all evident in their coat. Dogs with an **M*M*** result are likely to be phenotypically merle. Dogs with an **mm** result have no merle alleles and are unlikely to have a merle coat pattern.

Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions.

R Locus (USH2A)

The R Locus regulates the presence or absence of the roan coat color pattern. Partial duplication of the USH2A gene is strongly associated with this coat pattern. Dogs with at least one **R** allele will likely have roaning on otherwise uniformly unpigmented white areas. Roan appears in white areas controlled by the S Locus but not in other white or cream areas created by other loci, such as the E Locus with **ee** along with Dilute Red Pigmentation by I Locus (for example, in Samoyeds). Mechanisms for controlling the extent of roaning are currently unknown, and roaning can appear in a uniform or non-uniform pattern. Further, non-uniform roaning may appear as ticked, and not obviously roan. The roan pattern can appear with or without ticking.

Likely no impact on coat pattern (rr)

H Locus (Harlequin)

This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an **Hh** result will be harlequin if they are also **M*m** or **M*M*** at the M Locus and are not **ee** at the E locus. Dogs with a result of **hh** will not be harlequin. This trait is thought to be homozygous lethal; a living dog with an **HH** genotype has never been found.

No harlequin alleles (hh)

One merle allele; may

express merle (M*m)

alleles. At the time this

dog was genotyped Embark we could not

distinguish all of the

possible alleles.

Note: This locus

includes several

RESULT

DNA Test Report

Test Date: May 5th, 2025

embk.me/ivy3194

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Panda White Spotting

Panda White Spotting originated in a line of German Shepherd Dogs and causes a mostly symmetrical white spotting of the head and/or body. This is a dominant variant of the KIT gene, which has a role in pigmentation.

Dogs with one copy of the I allele will exhibit this white spotting. Dogs with two copies of the I allele have never been observed, as two copies of the variant is suspected to be lethal to the developing embryo. Dogs with the **NN** result will not exhibit white spotting due to this variant.

Not expected to display Panda pattern (NN)

Test Date: May 5th, 2025

embk.me/ivy3194

RESULT

TRAITS: OTHER COAT TRAITS

TRAIT

Furnishings (RSPO2)

Dogs with one or two copies of the **F** allele have "furnishings": the mustache, beard, and eyebrows characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two I alleles will not have furnishings, which is sometimes called an "improper coat" in breeds where furnishings are part of the breed standard. The mutation is a genetic insertion which we measure indirectly using a linkage test highly correlated with the insertion.

Likely unfurnished (no mustache, beard, and/or eyebrows) (II)

Test Date: May 5th, 2025

embk.me/ivy3194

Likely long coat (LhLh)

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Coat Length (FGF5)

The FGF5 gene affects hair length in many species, including cats, dogs, mice, and humans. In dogs, an **Lh** allele confers a long, silky hair coat across many breeds, including Yorkshire Terriers, Cocker Spaniels, and Golden Retrievers, while the **Sh** allele causes a shorter coat, as seen in the Boxer or the American Staffordshire Terrier. In certain breeds, such as the Pembroke Welsh Corgi and French Bulldog, the long haircoat is described as "fluffy". The coat length determined by FGF5, as reported by us, is influenced by four genetic variants that work together to promote long hair.

The most common of these is the **Lh1** variant (G/T, CanFam3.1, chr32, g.4509367) and the less common ones are **Lh2** (C/T, CanFam3.1, chr32, g.4528639), **Lh3** (16bp deletion, CanFam3.1, chr32, g.4528616), and **Lh4** (GG insertion, CanFam3.1, chr32, g.4528621). The FGF5_Lh1 variant is found across many dog breeds. The less common alleles, FGF5_Lh2, have been found in the Akita, Samoyed, and Siberian Husky, FGF5_Lh3 have been found in the Eurasier, and FGF5_Lh4 have been found in the Afghan Hound, Eurasier, and French Bulldog.

The **Lh** alleles have a recessive mode of inheritance, meaning that two copies of the **Lh** alleles are required to have long hair. The presence of two Lh alleles at any of these FGF5 loci is expected to result in long hair. One copy each of **Lh1** and **Lh2** have been found in Samoyeds, one copy each of **Lh1** and **Lh3** have been found in Eurasiers, and one copy each of **Lh1** and **Lh4** have been found in the Afghan Hounds and Eurasiers.

Interestingly, the Lh3 variant, a 16 base pair deletion, encompasses the Lh4 variant (GG insertion). The presence of one or two copies of Lh3 influences the outcome at the Lh4 locus. When two copies of Lh3 are present, there will be no reportable result for the FGF5_Lh4 locus. With one copy of Lh3, Lh4 can have either one copy of the variant allele or the normal allele. The overall FGF5 result remains unaffected by this.

RESULT

DNA Test Report

Test Date: May 5th, 2025

embk.me/ivy3194

RESULT

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Shedding (MC5R)

Dogs with at least one copy of the ancestral **C** allele, like many Labradors and German Shepherd Dogs, are heavy or seasonal shedders, while those with two copies of the **T** allele, including many Boxers, Shih Tzus and Chihuahuas, tend to be lighter shedders. Dogs with furnished/wire-haired coats caused by RSPO2 (the furnishings gene) tend to be low shedders regardless of their genotype at this gene.

Likely heavy/seasonal shedding (CT)

Coat Texture (KRT71)

Dogs with a long coat and at least one copy of the **T** allele have a wavy or curly coat characteristic of Poodles and Bichon Frises. Dogs with two copies of the ancestral **C** allele are likely to have a straight coat, but there are other factors that can cause a curly coat, for example if they at least one **F** allele for the Furnishings (RSPO2) gene then they are likely to have a curly coat. Dogs with short coats may carry one or two copies of the **T** allele but still have straight coats.

Likely straight coat (CC)

Hairlessness (FOXI3)

A duplication in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and Chinese Crested (other hairless breeds have different mutations). Dogs with the **NDup** genotype are likely to be hairless while dogs with the **NN** genotype are likely to have a normal coat. The **DupDup** genotype has never been observed, suggesting that dogs with that genotype cannot survive to birth. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Very unlikely to be hairless (NN)

Hairlessness (SGK3)

Hairlessness in the American Hairless Terrier arises from a mutation in the SGK3 gene. Dogs with the **DD** result are likely to be hairless. Dogs with the **ND** genotype will have a normal coat, but can pass the **D** variant on to their offspring.

Very unlikely to be hairless (NN)

Test Date: May 5th, 2025

embk.me/ivy3194

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Oculocutaneous Albinism Type 2 (SLC45A2)

Dogs with two copies **DD** of this deletion in the SLC45A2 gene have oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion **ND** will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

RESULT

IVY

Test Date: May 5th, 2025

embk.me/ivy3194

Likely medium or long

muzzle (CC)

RESULT

TRAITS: OTHER BODY FEATURES

TRAIT

Muzzle Length (BMP3)

Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral **C** allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived **A** allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science.

Tail Length (T)

Whereas most dogs have two **C** alleles and a long tail, dogs with one **G** allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with the **GG** genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail.

Hind Dewclaws (LMBR1)

Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with at least one copy of the **T** allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some **CC** or **TC** dogs will have hind dewclaws.

Unlikely to have hind dew claws (CC)

Likely normal-length

tail (CC)

Blue Eye Color (ALX4)

Test Date: May 5th, 2025

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT

Chondrodysplasia (Chr. 18 FGF4 Retrogene)

Dogs with one or two copies of the I allele will exhibit a short-legged trait known as chondrodysplasia (CDPA). CDPA is a breed-defining characteristic of many breeds exhibiting the "short-legged, longbodied" appearance known as disproportionate dwarfism, including the corgi, dachshund and basset hound. The impact of the I allele on leg length is additive. Therefore, dogs with the II result display the largest reduction in leg length. Dogs with the NI genotype will have an intermediate leg length, while dogs with the NN result will not exhibit leg shortening due to this variant. Breeds that display disproportionate dwarfism also frequently inherit a genetic variant known as the chondrodystrophy (CDDY) variant. The CDDY variant also shortens legs (in a less significant amount than CDPA) but, secondarily, increases the risk of Type I Intervertebral Disc Disease (IVDD). Test results for CDDY are listed in this dog's health testing results under "Intervertebral Disc Disease (Type I)". In contrast, the CDPA variant has NOT been shown to increase the risk of IVDD.

Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the

duplication (Dup) are more likely to have at least one blue eye. Some dogs with the duplication may have

only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. NN dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as

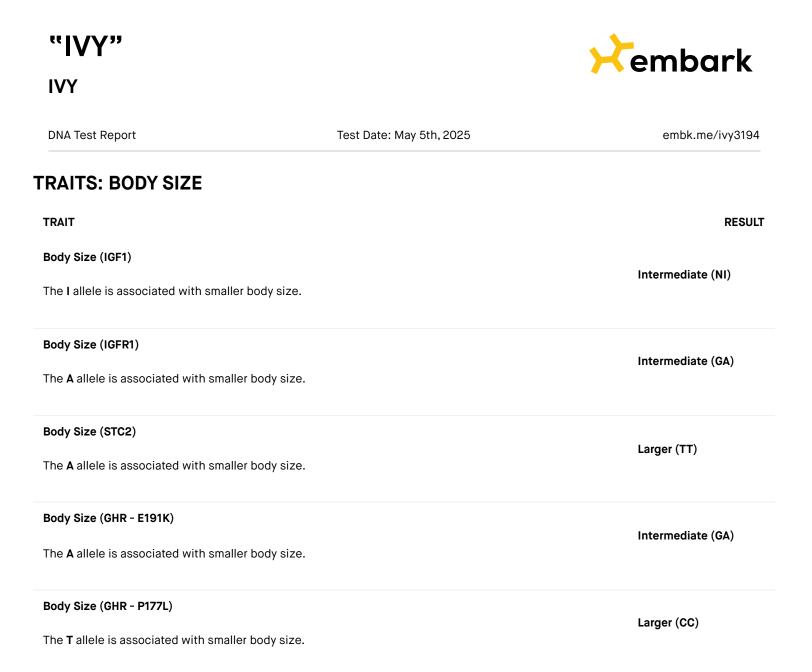
Not indicative of chondrodysplasia (normal leg length) (NN)

Less likely to have blue eyes (NN)

Likely normal muscling (CC)

Back Muscling & Bulk, Large Breed (ACSL4)

predictive as direct tests of the mutation in some lines.


The T allele is associated with heavy muscling along the back and trunk in characteristically "bulky" largebreed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The "bulky" T allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral C allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.

RESULT

embk.me/ivy3194

Fembark

DNA Test Report	Test Date: May 5th, 2025	embk.me/ivy3194
RAITS: PERFORMANC	E	
TRAIT		RESUL
Altitude Adaptation (EPAS1)		
found at high elevations. Dogs with a	becially tolerant of low oxygen environments (hypoxia), such as those at least one A allele are less susceptible to "altitude sickness." This breeds from high altitude areas such as the Tibetan Mastiff.	Normal altitude tolerance (GG)
Appetite (POMC)		
dogs with no copies of the mutation likely to have high food motivation, v percentage, and be more prone to of	ound primarily in Labrador and Flat Coated Retrievers. Compared to (NN), dogs with one (ND) or two (DD) copies of the mutation are more which can cause them to eat excessively, have higher body fat besity. Read more about the genetics of POMC, and learn how you can ost (https://embarkvet.com/resources/blog/pomc-dogs/). We est.	Normal food motivation (NN)

DNA Test Report

Test Date: May 5th, 2025

embk.me/ivy3194

embark

HEALTH REPORT

How to interpret Ivy's genetic health results:

If Ivy inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Ivy for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

Summary

Of the 274 genetic health risks we analyzed, we found 1 result that you should learn about.

Increased risk results (1)

MDR1 Drug Sensitivity

Clear results

Breed-relevant (13)

Other (259)

Test Date: May 5th, 2025

embk.me/ivy3194

BREED-RELEVANT RESULTS

Research studies indicate that these results are more relevant to dogs like Ivy, and may influence her chances of developing certain health conditions.

MDR1 Drug Sensitivity (ABCB1)	Increased risk
Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2)	Clear
Collie Eye Anomaly (NHEJ1)	Clear
Craniomandibular Osteopathy, CMO (SLC37A2)	Clear
Oay Blindness (CNGB3 Deletion, Alaskan Malamute Variant)	Clear
O Degenerative Myelopathy, DM (SOD1A)	Clear
Hereditary Ataxia (PNPLA8, Australian Shepherd Variant)	Clear
Hereditary Cataracts (HSF4 Exon 9, Australian Shepherd Variant)	Clear
Junctional Epidermolysis Bullosa (LAMB3 Exon 11, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscinosis 6, NCL 6 (CLN6 Exon 7, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8, Australian Shepherd Variant)	Clear
Primary Ciliary Dyskinesia, PCD (STK36, Australian Shepherd Variant)	Clear
Progressive Retinal Atrophy, prcd (PRCD Exon 1)	Clear
Urate Kidney & Bladder Stones (SLC2A9)	Clear

Test Date: May 5th, 2025

embk.me/ivy3194

OTHER RESULTS

Research has not yet linked these conditions to dogs with similar breeds to Ivy. Review any increased risk or notable results to understand her potential risk and recommendations.

2-DHA Kidney & Bladder Stones (APRT)	Clear
Acral Mutilation Syndrome (GDNF-AS, Spaniel and Pointer Variant)	Clear
Alaskan Husky Encephalopathy (SLC19A3)	Clear
Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP)	Clear
Alexander Disease (GFAP)	Clear
ALT Activity (GPT)	Clear
Anhidrotic Ectodermal Dysplasia (EDA Intron 8)	Clear
Autosomal Dominant Progressive Retinal Atrophy (RHO)	Clear
Bald Thigh Syndrome (IGFBP5)	Clear
Bernard-Soulier Syndrome, BSS (GP9, Cocker Spaniel Variant)	Clear
Bully Whippet Syndrome (MSTN)	Clear
Canine Elliptocytosis (SPTB Exon 30)	Clear
Canine Fucosidosis (FUCA1)	Clear
Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant)	Clear
Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)	Clear
Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant)	Clear
Canine Multifocal Retinopathy, cmr3 (BEST1 Exon 10 Deletion, Finnish and Swedish Lapphund, Lapponian Herder Variant)	Clear
Canine Multiple System Degeneration (SERAC1 Exon 4, Chinese Crested Variant)	Clear

DNA Test Report	Test Date: May 5th, 2025	embk.me/ivy3194
OTHER RESULTS		
Canine Multiple System Degeneration (SERAC	I Exon 15, Kerry Blue Terrier Variant)	Clear
Cardiomyopathy and Juvenile Mortality (YARS2)	Clear
Centronuclear Myopathy, CNM (PTPLA)		Clear
🔗 Cerebellar Hypoplasia (VLDLR, Eurasier Variant)	Clear
🔗 Chondrodysplasia (ITGA10, Norwegian Elkhour	d and Karelian Bear Dog Variant)	Clear
Cleft Lip and/or Cleft Palate (ADAMTS20, Nova	Scotia Duck Tolling Retriever Variant)	Clear
Cleft Palate, CP1 (DLX6 intron 2, Nova Scotia D	uck Tolling Retriever Variant)	Clear
Ocbalamin Malabsorption (CUBN Exon 8, Beag	e Variant)	Clear
Ocbalamin Malabsorption (CUBN Exon 53, Bord	der Collie Variant)	Clear
Omplement 3 Deficiency, C3 Deficiency (C3)		Clear
Ongenital Cornification Disorder (NSDHL, Chil	nuahua Variant)	Clear
Ongenital Dyserythropoietic Anemia and Poly	myopathy (EHPB1L1, Labrador Retriever Variant)	Clear
🔗 Congenital Hypothyroidism (TPO, Rat, Toy, Hair	ess Terrier Variant)	Clear
Ongenital Hypothyroidism (TPO, Tenterfield Te	errier Variant)	Clear
Ongenital Hypothyroidism with Goiter (TPO In	tron 13, French Bulldog Variant)	Clear
Ongenital Hypothyroidism with Goiter (SLC5A	5, Shih Tzu Variant)	Clear
Congenital Macrothrombocytopenia (TUBB1 Ex	on 1, Cairn and Norfolk Terrier Variant)	Clear
Ongenital Muscular Dystrophy (LAMA2, Italian	Greyhound)	Clear

DNA Test Report	Test Date: May 5th, 2025	embk.me/ivy3194
OTHER RESULTS		
Ocongenital Myasthenic Syndrome, C	CMS (COLQ, Labrador Retriever Variant)	Clear
🔗 Congenital Myasthenic Syndrome, C	CMS (COLQ, Golden Retriever Variant)	Clear
🔗 Congenital Myasthenic Syndrome, C	CMS (CHAT, Old Danish Pointing Dog Variant)	Clear
🔗 Congenital Myasthenic Syndrome, C	CMS (CHRNE, Jack Russell Terrier Variant)	Clear
Ocongenital Stationary Night Blindne	ess (LRIT3, Beagle Variant)	Clear
🔗 Congenital Stationary Night Blindne	ess (RPE65, Briard Variant)	Clear
Ocpper Toxicosis (Accumulating) (A	ТР7В)	Clear
Ocpper Toxicosis (Attenuating) (ATF	P7A, Labrador Retriever)	Clear
Ocpper Toxicosis (Attenuating) (RE	TN, Labrador Retriever)	Clear
🔗 Craniomandibular Osteopathy, CMO	(SLC37A2 Intron 16, Basset Hound Variant)	Clear
Orstinuria Type I-A (SLC3A1, Newfor	undland Variant)	Clear
🔗 Cystinuria Type II-A (SLC3A1, Austra	lian Cattle Dog Variant)	Clear
🚫 Cystinuria Type II-B (SLC7A9, Miniat	ure Pinscher Variant)	Clear
Oarier Disease (ATP2A2, Irish Terrier	r Variant)	Clear
Day Blindness (CNGA3 Exon 7, Germ	an Shepherd Variant)	Clear
🔗 Day Blindness (CNGA3 Exon 7, Labra	dor Retriever Variant)	Clear
Day Blindness (CNGB3 Exon 6, Germ	nan Shorthaired Pointer Variant)	Clear
Deafness and Vestibular Syndrome	of Dobermans, DVDob, DINGS (MYO7A)	Clear

∺embark

DNA Test Report	Test Date: May 5th, 2025	embk.me/ivy3194
OTHER RESULTS		
Demyelinating Polyneuropathy (SBF2/MTRM)	113)	Clear
🔗 Dental-Skeletal-Retinal Anomaly (MIA3, Can	e Corso Variant)	Clear
O Iffuse Cystic Renal Dysplasia and Hepatic F	ibrosis (INPP5E Intron 9, Norwich Terrier Variant)	Clear
Oilated Cardiomyopathy, DCM (RBM20, Schn	auzer Variant)	Clear
Oilated Cardiomyopathy, DCM1 (PDK4, Dober	man Pinscher Variant 1)	Clear
Oilated Cardiomyopathy, DCM2 (TTN, Doberr	nan Pinscher Variant 2)	Clear
Disproportionate Dwarfism (PRKG2, Dogo Area	gentino Variant)	Clear
Ory Eye Curly Coat Syndrome (FAM83H Exon	5)	Clear
Oystrophic Epidermolysis Bullosa (COL7A1, C	entral Asian Shepherd Dog Variant)	Clear
Oystrophic Epidermolysis Bullosa (COL7A1, C	olden Retriever Variant)	Clear
Early Bilateral Deafness (LOXHD1 Exon 38, Ro	ottweiler Variant)	Clear
Early Onset Adult Deafness, EOAD (EPS8L2 D	eletion, Rhodesian Ridgeback Variant)	Clear
🔗 Early Onset Cerebellar Ataxia (SEL1L, Finnish	Hound Variant)	Clear
Ehlers Danlos (ADAMTS2, Doberman Pinsche	er Variant)	Clear
Ehlers-Danlos Syndrome (EDS) (COL5A1, Lab	orador Retriever Variant)	Clear
Enamel Hypoplasia (ENAM Deletion, Italian G	reyhound Variant)	Clear
🔗 Enamel Hypoplasia (ENAM SNP, Parson Russ	ell Terrier Variant)	Clear
Sepisodic Falling Syndrome (BCAN)		Clear

Clear

Clear

DNA Test Report	Test Date: May 5th, 2025	embk.me/ivy3194
OTHER RESULTS		
Service Exercise-Induced Collapse, EIC (DNM1)		Clear
Sactor VII Deficiency (F7 Exon 5)		Clear
Sactor XI Deficiency (F11 Exon 7, Kerry Blue	e Terrier Variant)	Clear
Familial Nephropathy (COL4A4 Exon 3, Cod	cker Spaniel Variant)	Clear
Samilial Nephropathy (COL4A4 Exon 30, Er	nglish Springer Spaniel Variant)	Clear
🧭 Fanconi Syndrome (FAN1, Basenji Variant)		Clear
Setal-Onset Neonatal Neuroaxonal Dystrop	ohy (MFN2, Giant Schnauzer Variant)	Clear
🔗 Glanzmann's Thrombasthenia Type I (ITGA	2B Exon 13, Great Pyrenees Variant)	Clear
🔗 Glanzmann's Thrombasthenia Type I (ITGA	2B Exon 12, Otterhound Variant)	Clear
Globoid Cell Leukodystrophy, Krabbe disea	ase (GALC Exon 5, Terrier Variant)	Clear
Glycogen Storage Disease Type IA, Von Gi	erke Disease, GSD IA (G6PC1, German Pinscher Variant)	Clear
Glycogen Storage Disease Type IA, Von Gi	erke Disease, GSD IA (G6PC, Maltese Variant)	Clear
Glycogen Storage Disease Type IIIA, GSD I	IIA (AGL, Curly Coated Retriever Variant)	Clear
 Glycogen storage disease Type VII, Phosp and English Springer Spaniel Variant) 	hofructokinase Deficiency, PFK Deficiency (PFKM, Whippet	Clear
 Glycogen storage disease Type VII, Phosp Wachtelhund Variant) 	hofructokinase Deficiency, PFK Deficiency (PFKM,	Clear
GM1 Gangliosidosis (GLB1 Exon 2, Portugu	ese Water Dog Variant)	Clear

GM1 Gangliosidosis (GLB1 Exon 15, Alaskan Husky Variant)

GM1 Gangliosidosis (GLB1 Exon 15, Shiba Inu Variant)

DNA Test Report	Test Date: May 5th, 2025	embk.me/ivy3194
OTHER RESULTS		
🧭 GM2 Gangliosidosis (HEXA, Japanese Chin Va	riant)	Clear
GM2 Gangliosidosis (HEXB, Poodle Variant)		Clear
Golden Retriever Progressive Retinal Atrophy	1, GR-PRA1 (SLC4A3)	Clear
Golden Retriever Progressive Retinal Atrophy	2, GR-PRA2 (TTC8)	Clear
Goniodysgenesis and Glaucoma, Pectinate Li	gament Dysplasia, PLD (OLFM3)	Clear
Hemophilia A (F8 Exon 11, German Shepherd V	/ariant 1)	Clear
lemophilia A (F8 Exon 1, German Shepherd V	ariant 2)	Clear
Hemophilia A (F8 Exon 10, Boxer Variant)		Clear
Hemophilia B (F9 Exon 7, Terrier Variant)		Clear
Hemophilia B (F9 Exon 7, Rhodesian Ridgebad	k Variant)	Clear
Hereditary Ataxia, Cerebellar Degeneration (R	AB24, Old English Sheepdog and Gordon Setter Variant)	Clear
Hereditary Cataracts (FYCO1, Wirehaired Poin	ting Griffon Variant)	Clear
Hereditary Cerebellar Ataxia (SELENOP, Belgia	n Shepherd Variant)	Clear
Hereditary Footpad Hyperkeratosis (FAM83G,	Terrier and Kromfohrlander Variant)	Clear
Hereditary Footpad Hyperkeratosis (DSG1, Ro	ttweiler Variant)	Clear
Hereditary Nasal Parakeratosis (SUV39H2 Intr	on 4, Greyhound Variant)	Clear
Hereditary Nasal Parakeratosis, HNPK (SUV39	H2)	Clear
Hereditary Vitamin D-Resistant Rickets (VDR)		Clear

DNA Test Report	Test Date: May 5th, 2025	embk.me/ivy3194
OTHER RESULTS		
🔗 Hypocatalasia, Acatalasemia (CAT)		Clear
Hypomyelination and Tremors (FNIP2, Weimar	aner Variant)	Clear
🔗 Hypophosphatasia (ALPL Exon 9, Karelian Bea	Dog Variant)	Clear
S Ichthyosis (NIPAL4, American Bulldog Variant)		Clear
O Ichthyosis (ASPRV1 Exon 2, German Shepherd	Variant)	Clear
O Ichthyosis (SLC27A4, Great Dane Variant)		Clear
O Ichthyosis, Epidermolytic Hyperkeratosis (KRT	10, Terrier Variant)	Clear
O Ichthyosis, ICH1 (PNPLA1, Golden Retriever Va	riant)	Clear
O Ichthyosis, ICH2 (ABHD5, Golden Retriever Var	iant)	Clear
Inflammatory Myopathy (SLC25A12)		Clear
Inherited Myopathy of Great Danes (BIN1)		Clear
Inherited Selected Cobalamin Malabsorption v	vith Proteinuria (CUBN, Komondor Variant)	Clear
O Intervertebral Disc Disease (Type I) (FGF4 retr	ogene - CFA12)	Clear
O Intestinal Lipid Malabsorption (ACSL5, Austral	an Kelpie)	Clear
Sunctional Epidermolysis Bullosa (LAMA3 Exor	n 66, Australian Cattle Dog Variant)	Clear
Juvenile Epilepsy (LGI2)		Clear
Suvenile Laryngeal Paralysis and Polyneuropat	hy (RAB3GAP1, Rottweiler Variant)	Clear
Juvenile Myoclonic Epilepsy (DIRAS1)		Clear

DNA Test Report Test Date: May 5th, 2025

OTHER RESULTS

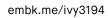
C L-2-Hydroxyglutaricaciduria, L2HGA (L2HGDH, Staffordshire Bull Terrier Variant)	Clear
Contractional Lagotto Storage Disease (ATG4D)	Clear
Laryngeal Paralysis (RAPGEF6, Miniature Bull Terrier Variant)	Clear
 Laryngeal Paralysis and Polyneuropathy (CNTNAP1, Leonberger, Saint Bernard, and Labrador Retriever variant) 	Clear
Conset Spinocerebellar Ataxia (CAPN1)	Clear
S Late-Onset Neuronal Ceroid Lipofuscinosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant)	Clear
Control Leonberger Polyneuropathy 1 (LPN1, ARHGEF10)	Clear
Control Leonberger Polyneuropathy 2 (GJA9)	Clear
Control Lethal Acrodermatitis, LAD (MKLN1)	Clear
Leukodystrophy (TSEN54 Exon 5, Standard Schnauzer Variant)	Clear
Control Ligneous Membranitis, LM (PLG)	Clear
C Limb Girdle Muscular Dystrophy (SGCD, Boston Terrier Variant)	Clear
C Limb-Girdle Muscular Dystrophy 2D (SGCA Exon 3, Miniature Dachshund Variant)	Clear
Cong QT Syndrome (KCNQ1)	Clear
Lundehund Syndrome (LEPREL1)	Clear
Macular Corneal Dystrophy, MCD (CHST6)	Clear
Malignant Hyperthermia (RYR1)	Clear
May-Hegglin Anomaly (MYH9)	Clear

DNA Test Report	Test Date: May 5th, 2025	embk.me/ivy3194

OTHER RESULTS

Medium-Chain Acyl-CoA Dehydrogenase Deficiency, MCADD (ACADM, Cavalier King Charles Spaniel Variant)	Clear
Methemoglobinemia (CYB5R3, Pit Bull Terrier Variant)	Clear
Methemoglobinemia (CYB5R3)	Clear
Microphthalmia (RBP4 Exon 2, Soft Coated Wheaten Terrier Variant)	Clear
Mucopolysaccharidosis IIIB, Sanfilippo Syndrome Type B, MPS IIIB (NAGLU, Schipperke Variant)	Clear
Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, Dachshund Variant)	Clear
Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, New Zealand Huntaway Variant)	Clear
Mucopolysaccharidosis Type VI, Maroteaux-Lamy Syndrome, MPS VI (ARSB Exon 5, Miniature Pinscher Variant)	Clear
Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 3, German Shepherd Variant)	Clear
Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 5, Terrier Brasileiro Variant)	Clear
Muscular Dystrophy (DMD, Cavalier King Charles Spaniel Variant 1)	Clear
Muscular Dystrophy (DMD, Golden Retriever Variant)	Clear
Muscular Dystrophy-Dystroglycanopathy (LARGE1, Labrador Retriever Variant)	Clear
Musladin-Lueke Syndrome, MLS (ADAMTSL2)	Clear
Myasthenia Gravis-Like Syndrome (CHRNE, Heideterrier Variant)	Clear
Myotonia Congenita (CLCN1 Exon 23, Australian Cattle Dog Variant)	Clear
Myotonia Congenita (CLCN1 Exon 19, Labrador Retriever Variant)	Clear
O Myotonia Congenita (CLCN1 Exon 7, Miniature Schnauzer Variant)	Clear

DNA Test Report	Test Date: May 5th, 2025	embk.me/ivy3194
OTHER RESULTS		
Narcolepsy (HCRTR2 Exon 1, Dachshund Varia	ant)	Clear
Narcolepsy (HCRTR2 Intron 4, Doberman Pins	scher Variant)	Clear
Narcolepsy (HCRTR2 Intron 6, Labrador Retrie	ever Variant)	Clear
Nemaline Myopathy (NEB, American Bulldog	Variant)	Clear
Neonatal Cerebellar Cortical Degeneration (S	PTBN2, Beagle Variant)	Clear
Neonatal Encephalopathy with Seizures, NEV	VS (ATF2)	Clear
Neonatal Interstitial Lung Disease (LAMP3)		Clear
Neuroaxonal Dystrophy, NAD (VPS11, Rottweil	er Variant)	Clear
Neuroaxonal Dystrophy, NAD (TECPR2, Spanis	sh Water Dog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 1, NCL 1 (PPT	1 Exon 8, Dachshund Variant 1)	Clear
Neuronal Ceroid Lipofuscinosis 10, NCL 10 (C	TSD Exon 5, American Bulldog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TPF	1 Exon 4, Dachshund Variant 2)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN	15 Exon 4 SNP, Border Collie Variant)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN	15 Exon 4 Deletion, Golden Retriever Variant)	Clear
Neuronal Ceroid Lipofuscinosis 7, NCL 7 (MFS	D8, Chihuahua and Chinese Crested Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN	18 Exon 2, English Setter Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN	18 Insertion, Saluki Variant)	Clear
 Neuronal Ceroid Lipofuscinosis, Cerebellar At Variant) 	axia, NCL4A (ARSG Exon 2, American Staffordshire Terrier	Clear


DNA Test Report	Test Date: May 5th, 2025	embk.me/ivy3194
OTHER RESULTS		
Oculocutaneous Albinism, OCA (SLC45A2 Ex	on 6, Bullmastiff Variant)	Clear
Oculocutaneous Albinism, OCA (SLC45A2, Sr	nall Breed Variant)	Clear
🔗 Oculoskeletal Dysplasia 2 (COL9A2, Samoye	d Variant)	Clear
Osteochondrodysplasia (SLC13A1, Poodle Va	riant)	Clear
⊘ Osteogenesis Imperfecta (COL1A2, Beagle V	ariant)	Clear
Osteogenesis Imperfecta (SERPINH1, Dachsl	nund Variant)	Clear
⊘ Osteogenesis Imperfecta (COL1A1, Golden R	etriever Variant)	Clear
P2Y12 Receptor Platelet Disorder (P2Y12)		Clear
Pachyonychia Congenita (KRT16, Dogue de B	Bordeaux Variant)	Clear
Paroxysmal Dyskinesia, PxD (PIGN)		Clear
Persistent Mullerian Duct Syndrome, PMDS (AMHR2)	Clear
Pituitary Dwarfism (POU1F1 Intron 4, Karelian	Bear Dog Variant)	Clear
Platelet Factor X Receptor Deficiency, Scott	Syndrome (TMEM16F)	Clear
Polycystic Kidney Disease, PKD (PKD1)		Clear
Pompe's Disease (GAA, Finnish and Swedish	Lapphund, Lapponian Herder Variant)	Clear
Prekallikrein Deficiency (KLKB1 Exon 8)		Clear
Primary Ciliary Dyskinesia, PCD (NME5, Alask	an Malamute Variant)	Clear
Primary Ciliary Dyskinesia, PCD (CCDC39 Exc	on 3, Old English Sheepdog Variant)	Clear

∺embark

Test Date: May 5th, 2025

embark

OTHER RESULTS

Primary Hyperoxaluria (AGXT)	Clear
Primary Lens Luxation (ADAMTS17)	Clear
Primary Open Angle Glaucoma (ADAMTS17 Exon 11, Basset Fauve de Bretagne Variant)	Clear
Primary Open Angle Glaucoma (ADAMTS10 Exon 17, Beagle Variant)	Clear
Primary Open Angle Glaucoma (ADAMTS10 Exon 9, Norwegian Elkhound Variant)	Clear
Primary Open Angle Glaucoma and Primary Lens Luxation (ADAMTS17 Exon 2, Chinese Shar-Pei Variant)	Clear
Progressive Retinal Atrophy (SAG)	Clear
Progressive Retinal Atrophy (IFT122 Exon 26, Lapponian Herder Variant)	Clear
Progressive Retinal Atrophy 5, PRA5 (NECAP1 Exon 6, Giant Schnauzer Variant)	Clear
Progressive Retinal Atrophy, Bardet-Biedl Syndrome (BBS2 Exon 11, Shetland Sheepdog Variant)	Clear
Progressive Retinal Atrophy, CNGA (CNGA1 Exon 9)	Clear
Progressive Retinal Atrophy, crd1 (PDE6B, American Staffordshire Terrier Variant)	Clear
Progressive Retinal Atrophy, crd4/cord1 (RPGRIP1)	Clear
Progressive Retinal Atrophy, PRA1 (CNGB1)	Clear
Progressive Retinal Atrophy, PRA3 (FAM161A)	Clear
Progressive Retinal Atrophy, rcd1 (PDE6B Exon 21, Irish Setter Variant)	Clear
Progressive Retinal Atrophy, rcd3 (PDE6A)	Clear
Proportionate Dwarfism (GH1 Exon 5, Chihuahua Variant)	Clear

DNA Test Report	Test Date: May 5th, 2025	embk.me/ivy3194
OTHER RESULTS		
Protein Losing Nephropathy, PLN (NPHS1)		Clear
Pyruvate Dehydrogenase Deficiency (PDP1, Sp	aniel Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 5, Base	enji Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7, Beag	gle Variant)	Clear
O Pyruvate Kinase Deficiency (PKLR Exon 10, Ter	rier Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7, Labr	ador Retriever Variant)	Clear
O Pyruvate Kinase Deficiency (PKLR Exon 7, Pug	Variant)	Clear
Raine Syndrome (FAM20C)		Clear
Recurrent Inflammatory Pulmonary Disease, RI	PD (AKNA, Rough Collie Variant)	Clear
Renal Cystadenocarcinoma and Nodular Derm	atofibrosis (FLCN Exon 7)	Clear
Retina Dysplasia and/or Optic Nerve Hypoplas	ia (SIX6 Exon 1, Golden Retriever Variant)	Clear
Sensory Neuropathy (FAM134B, Border Collie V	/ariant)	Clear
Severe Combined Immunodeficiency, SCID (PP	RKDC, Terrier Variant)	Clear
Severe Combined Immunodeficiency, SCID (RA	AG1, Wetterhoun Variant)	Clear
Shaking Puppy Syndrome (PLP1, English Sprin	ger Spaniel Variant)	Clear
Shar-Pei Autoinflammatory Disease, SPAID, Sh	ar-Pei Fever (MTBP)	Clear
Skeletal Dysplasia 2, SD2 (COL11A2, Labrador I	Retriever Variant)	Clear
Skin Fragility Syndrome (PKP1, Chesapeake Ba	ay Retriever Variant)	Clear

≻embark

DNA Test Report	Test Date: May 5th, 2025	embk.me/ivy3194
OTHER RESULTS		
Spinocerebellar Ataxia (SCN8A, Alpine Dach	sbracke Variant)	Clear
Spinocerebellar Ataxia with Myokymia and	or Seizures (KCNJ10)	Clear
Spongy Degeneration with Cerebellar Ataxia	a 1 (KCNJ10)	Clear
Spongy Degeneration with Cerebellar Ataxia	a 2 (ATP1B2)	Clear
Stargardt Disease (ABCA4 Exon 28, Labrado	r Retriever Variant)	Clear
Succinic Semialdehyde Dehydrogenase Def	iciency (ALDH5A1 Exon 7, Saluki Variant)	Clear
Thrombopathia (RASGRP1 Exon 5, American	Eskimo Dog Variant)	Clear
O Thrombopathia (RASGRP1 Exon 5, Basset He	ound Variant)	Clear
Thrombopathia (RASGRP1 Exon 8, Landseer	Variant)	Clear
Trapped Neutrophil Syndrome, TNS (VPS13E	3)	Clear
Ollrich-like Congenital Muscular Dystrophy	(COL6A3 Exon 10, Labrador Retriever Variant)	Clear
Ollrich-like Congenital Muscular Dystrophy	(COL6A1 Exon 3, Landseer Variant)	Clear
Unilateral Deafness and Vestibular Syndrom	e (PTPRQ Exon 39, Doberman Pinscher)	Clear
\bigcirc Von Willebrand Disease Type I, Type I vWD (VWF)	Clear
⊘ Von Willebrand Disease Type II, Type II vWD	(VWF, Pointer Variant)	Clear
⊘ Von Willebrand Disease Type III, Type III vW	D (VWF Exon 4, Terrier Variant)	Clear
⊘ Von Willebrand Disease Type III, Type III vW	D (VWF Intron 16, Nederlandse Kooikerhondje Variant)	Clear
⊘ Von Willebrand Disease Type III, Type III vW	D (VWF Exon 7, Shetland Sheepdog Variant)	Clear

<mark>} →</mark>embark

DNA Test Report	Test Date: May 5th, 2025	embk.me/ivy3194
OTHER RESULTS		
X-Linked Hereditary Nephropath	y, XLHN (COL4A5 Exon 35, Samoyed Variant 2)	Clear
X-Linked Myotubular Myopathy	MTM1, Labrador Retriever Variant)	Clear
⊘ X-Linked Progressive Retinal Atr	ophy 1, XL-PRA1 (RPGR)	Clear
X-linked Severe Combined Immu	unodeficiency, X-SCID (IL2RG Exon 1, Basset Hound Variant)	Clear
X-linked Severe Combined Immu	unodeficiency, X-SCID (IL2RG, Corgi Variant)	Clear
Xanthine Urolithiasis (XDH, Mixe	d Breed Variant)	Clear
🧭 β-Mannosidosis (MANBA Exon 1	6, Mixed-Breed Variant)	Clear
Mast Cell Tumor		No result

Test Date: May 5th, 2025

embk.me/ivy3194

embark

HEALTH REPORT

Increased risk result

MDR1 Drug Sensitivity

Ivy inherited one copy of the variant we tested for MDR1 Drug Sensitivity Ivy is at increased risk for MDR1

How to interpret this result

Ivy has one copy of a variant at the ABCB1 gene and is at risk for displaying adverse drug reactions. While she may not be as severely affected as a dog with two copies of the ABCB1 drug sensitivity allele, normal dosages of drugs could still have potentially severe effects on Ivy. Please inform your veterinarian that Ivy carries this variant; it is essential that they know this information before prescribing drugs.

What is MDR1 Drug Sensitivity?

Sensitivity to certain classes of drugs, notably the parasiticide ivermectin, as well as certain gastroprotectant and anti-cancer medications, occurs in dogs with a mutation in the ABCB1 gene.

When signs & symptoms develop in affected dogs

Symptoms arise after a dog has received an MDR1 problem drug or dosage, and can range from vomiting and diarrhea to lethargy, seizures, or coma.

Signs & symptoms

MDR1 often presents in young adulthood, only because this is most commonly when a dog is first exposed to a problem drug like high dose ivermectin or acepromazine.

How vets diagnose this condition

This is usually a retroactive diagnosis after a dog has an adverse reaction to a problem drug--however, genetic testing could help you avoid a first reaction altogether.

How this condition is treated

MDR1 is perfectly avoidable simply by avoiding the problem drugs, or problem dosages.

Actions to take if your dog is affected

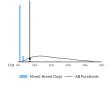
- Review the MDR1 Problem Drug List as described by Washington State University and notify your veterinarian to flag this in your dog's file!
- Farm dogs with MDR1 may also benefit if they are either kept away from herds where ivermectin is used as a routine antiparasitic, or if another form of antiparasitic is used in areas that they are working.

DNA Test Report

embk.me/ivy3194

RESULT

INBREEDING AND DIVERSITY


CATEGORY

Coefficient Of Inbreeding

Our genetic COI measures the proportion of your dog's genome where the genes on the mother's side are identical by descent to those on the father's side.

Your Dog's COI: 6%

6%

High Diversity

How common is this amount of diversity in mixed breed dogs:

High Diversity

How common is this amount of diversity in mixed breed dogs:

MHC Class II - DLA DRB1

A Dog Leukocyte Antigen (DLA) gene, DRB1 encodes a major histocompatibility complex (MHC) protein involved in the immune response. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Addison's disease (hypoadrenocorticism) in certain dog breeds, but these findings have yet to be scientifically validated.

MHC Class II - DLA DQA1 and DQB1

DQA1 and DQB1 are two tightly linked DLA genes that code for MHC proteins involved in the immune response. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.