

DNA Test Report

BREED ANCESTRY

Border Collie : 100.0%

Test Date: December 31st, 2024

embk.me/kallie231

GENETIC STATS

Predicted adult weight: **35 lbs** Life stage: **Young adult** Based on your dog's date of birth provided.

TEST DETAILS

Kit number: EM-25668758 Swab number: 31240510103219

"BABY DOG" KALLIE

DNA Test Report

Fun Fact

Border Collies are known for possessing an incredibly intense stare used to intimidate livestock. Test Date: December 31st, 2024

embk.me/kallie231

BORDER COLLIE

The Border Collie was bred in the border country between England and Scotland as a herding dog to control sheep. They were highly sought after dogs by local shepherds, who were fond of their energetic and intelligent nature. Sheepdog trials began in the late 1800s, in which this breed of sheepdog impressed and was bred further, developing the Border Collie we recognize today. Today the Border Collie is considered one of, if not the, best sheepherding dogs. The AKC recognized the Border Collie as an official breed in 1995. Border Collies have a high stamina level, matched by their desire to be kept busy. While being a loyal companion dog, the Border Collie mainly thrives on activity. If not given sufficient exercise, Border Collies can be difficult house dogs, directing their energy on less productive activities such as chasing anything that moves or digging. This work-oriented breed requires a high level of both physical and mental stimulation. Border Collies generally have a black and white double coat that sheds moderately. As you can imagine, this breed excels at many sports including obedience, agility and tracking. The Border Collie ranks as the 38th most popular breed.

DNA Test Report

Test Date: December 31st, 2024

embk.me/kallie231

MATERNAL LINE

Through Baby Dog's mitochondrial DNA we can trace her mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

HAPLOGROUP: C2

C2 is a very old female lineage found more commonly among English Setters, English Bulldogs, and American Eskimo Dogs. We also see C2 in village dogs in South Asia. Rather than having a few characteristic breeds representing this lineage particularly well, it is present in a few uncommon individuals of many different breeds. Unlike some European breed lineages that have seen skyrocketing popularity along the path to the modern dogs we see today, C2 tends to reflect the deep history of man's best friend.

HAPLOTYPE: C41

Part of the C2 haplogroup, this haplotype occurs most frequently in mixed breed dogs.

DNA Test Report

Test Date: December 31st, 2024

TRAITS: COAT COLOR

TRAIT

E Locus (MC1R)

The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive **e** variant do not produce dark hairs and will express a red pigment called pheomelanin over their entire body. The shade of red, which can range from a deep copper to white, depends on other genetic factors, including the Intensity loci. In addition to determining if a dog can develop dark hairs, the E Locus can give a dog a black "mask" or "widow's peak" unless the dog has overriding coat color genetic factors.

Dogs with one or two copies of the E^m variant may have a melanistic mask (dark facial hair as commonly seen in the German Shepherd Dog and Pug). In the absence of E^m, dogs with the E^g variant can have a "grizzle" phenotype (darker color on the head and top with a melanistic "widow's peak" and a lighter underside, commonly seen in the Afghan Hound and Borzoi and also referred to as "domino"). In the absence of both E^m and E variants, dogs with the E^a or E^h variants can express the grizzle phenotype. Additionally, a dog with any combination of two of the E^g, E^a, or E^h variants (example: E^gE^a) is also expected to express the grizzle phenotype.

K Locus (CBD103)

The K Locus K^B allele "overrides" the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the K^B allele is referred to as the "dominant black" allele. As a result, dogs with at least one K^B allele will usually have solid black or brown coats (or red/cream coats if they are **ee** at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog's coat and cause other patterns, such as white spotting. Dogs with the **k**^Y**k**^Y genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as **K**^B**k**^Y may be brindle rather than black or brown.

More likely to have a mostly solid black or brown coat (K^Bk^y)

Can have a melanistic mask (E^mE)

RESULT

DNA Test Report

Test Date: December 31st, 2024

embk.me/kallie231

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Intensity Loci

Areas of a dog's coat where dark (black or brown) pigment is not expressed either contain red/yellow pigment, or no pigment at all. Five locations across five chromosomes explain approximately 70% of red pigmentation "intensity" variation across all dogs. Dogs with a result of **Intense Red Pigmentation** will likely have deep red hair like an Irish Setter or "apricot" hair like some Poodles, dogs with a result of **Intermediate Red Pigmentation** will likely have tan or yellow hair like a Soft-Coated Wheaten Terrier, and dogs with **Dilute Red Pigmentation** will likely have cream or white hair like a Samoyed. Because the mutations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test.

No impact on coat pattern (Intermediate Red Pigmentation)

A Locus (ASIP)

The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not **ee** at the E Locus and are **k**^y**k**^y at the K Locus. Sable (also called "Fawn") dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called "Wolf Sable") dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

D Locus (MLPH)

The D locus result that we report is determined by three different genetic variants that can work together to cause diluted pigmentation. These are the common **d** allele, also known as "**d1**", and the less common alleles known as "**d2**" and "**d3**". Dogs with two **d** alleles, regardless of which variant, will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that in certain breeds, dilute dogs have a higher incidence of Color Dilution Alopecia. Dogs with one **d** allele will not be dilute, but can pass the **d** allele on to their puppies.

Not expressed (a^wa^t)

Dark areas of hair and skin are not lightened (Dd)

DNA Test Report

Test Date: December 31st, 2024

embk.me/kallie231

TRAITS: COAT COLOR (CONTINUED)

TRAIT	RESULT
Cocoa (HPS3)	
Dogs with the coco genotype will produce dark brown pigment instead of black in both their hair and skin. Dogs with the Nco genotype will produce black pigment, but can pass the co allele on to their puppies. Dogs that have the coco genotype as well as the bb genotype at the B locus are generally a lighter brown than dogs that have the Bb or BB genotypes at the B locus.	No co alleles, not expressed (NN)
B Locus (TYRP1)	
Dogs with two copies of the b allele produce brown pigment instead of black in both their hair and skin. Dogs with one copy of the b allele will produce black pigment, but can pass the b allele on to their puppies. E Locus ee dogs that carry two b alleles will have red or cream coats, but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red".	Black or gray hair and skin (Bb)
Saddle Tan (RALY)	
The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Beagle, and German Shepherd. Dogs that have the II genotype at this locus are more likely to be mostly black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus a ^t allele, so dogs that do not express a ^t are not influenced by this gene.	Not expressed (NN)
S Locus (MITF)	
The S Locus determines white spotting and pigment distribution. MITE controls where pigment is	

The S Locus determines white spotting and pigment distribution. MITF controls where pigment is produced, and an insertion in the MITF gene causes a loss of pigment in the coat and skin, resulting in white hair and/or pink skin. Dogs with two copies of this variant will likely have breed-dependent white patterning, with a nearly white, parti, or piebald coat. Dogs with one copy of this variant will have more limited white spotting and may be considered flash, parti or piebald. This MITF variant does not explain all white spotting patterns in dogs and other variants are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their S Locus genotype.

Likely solid colored, but may have small amounts of white (Ssp)

DNA Test Report

Test Date: December 31st, 2024

embk.me/kallie231

RESULT

embark

TRAITS: COAT COLOR (CONTINUED)

TRAIT

M Locus (PMEL)

Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an **M*m** result are likely to be phenotypically merle or could be "non-expressing" merle, meaning that the merle pattern is very subtle or not at all evident in their coat. Dogs with an **M*M*** result are likely to be phenotypically merle. Dogs with an **mm** result have no merle alleles and are unlikely to have a merle coat pattern.

Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions.

R Locus (USH2A)

The R Locus regulates the presence or absence of the roan coat color pattern. Partial duplication of the USH2A gene is strongly associated with this coat pattern. Dogs with at least one **R** allele will likely have roaning on otherwise uniformly unpigmented white areas. Roan appears in white areas controlled by the S Locus but not in other white or cream areas created by other loci, such as the E Locus with **ee** along with Dilute Red Pigmentation by I Locus (for example, in Samoyeds). Mechanisms for controlling the extent of roaning are currently unknown, and roaning can appear in a uniform or non-uniform pattern. Further, non-uniform roaning may appear as ticked, and not obviously roan. The roan pattern can appear with or without ticking.

Likely no impact on coat pattern (rr)

H Locus (Harlequin)

This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an **Hh** result will be harlequin if they are also **M*m** or **M*M*** at the M Locus and are not **ee** at the E locus. Dogs with a result of **hh** will not be harlequin. This trait is thought to be homozygous lethal; a living dog with an **HH** genotype has never been found.

No harlequin alleles (hh)

One merle allele; may express merle (M*m)

Note: This locus includes several alleles. At the time this dog was genotyped Embark we could not distinguish all of the possible alleles.

DNA Test Report

Test Date: December 31st, 2024

embk.me/kallie231

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Panda White Spotting

Panda White Spotting originated in a line of German Shepherd Dogs and causes a mostly symmetrical white spotting of the head and/or body. This is a dominant variant of the KIT gene, which has a role in pigmentation.

Dogs with one copy of the I allele will exhibit this white spotting. Dogs with two copies of the I allele have never been observed, as two copies of the variant is suspected to be lethal to the developing embryo. Dogs with the **NN** result will not exhibit white spotting due to this variant.

Not expected to display Panda pattern (NN)

DNA Test Report

Test Date: December 31st, 2024

embk.me/kallie231

RESULT

TRAITS: OTHER COAT TRAITS

TRAIT

Furnishings (RSPO2)

Dogs with one or two copies of the **F** allele have "furnishings": the mustache, beard, and eyebrows characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two **I** alleles will not have furnishings, which is sometimes called an "improper coat" in breeds where furnishings are part of the breed standard. The mutation is a genetic insertion which we measure indirectly using a linkage test highly correlated with the insertion.

Likely unfurnished (no mustache, beard, and/or eyebrows) (II)

DNA Test Report

Test Date: December 31st, 2024

embk.me/kallie231

RESULT

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Coat Length (FGF5)

The FGF5 gene affects hair length in many species, including cats, dogs, mice, and humans. In dogs, an **Lh** allele confers a long, silky hair coat across many breeds, including Yorkshire Terriers, Cocker Spaniels, and Golden Retrievers, while the **Sh** allele causes a shorter coat, as seen in the Boxer or the American Staffordshire Terrier. In certain breeds, such as the Pembroke Welsh Corgi and French Bulldog, the long haircoat is described as "fluffy". The coat length determined by FGF5, as reported by us, is influenced by four genetic variants that work together to promote long hair.

The most common of these is the **Lh1** variant (G/T, CanFam3.1, chr32, g.4509367) and the less common ones are **Lh2** (C/T, CanFam3.1, chr32, g.4528639), **Lh3** (16bp deletion, CanFam3.1, chr32, g.4528616), and **Lh4** (GG insertion, CanFam3.1, chr32, g.4528621). The FGF5_Lh1 variant is found across many dog breeds. The less common alleles, FGF5_Lh2, have been found in the Akita, Samoyed, and Siberian Husky, FGF5_Lh3 have been found in the Eurasier, and FGF5_Lh4 have been found in the Afghan Hound, Eurasier, and French Bulldog.

The **Lh** alleles have a recessive mode of inheritance, meaning that two copies of the **Lh** alleles are required to have long hair. The presence of two Lh alleles at any of these FGF5 loci is expected to result in long hair. One copy each of **Lh1** and **Lh2** have been found in Samoyeds, one copy each of **Lh1** and **Lh3** have been found in Eurasiers, and one copy each of **Lh1** and **Lh4** have been found in the Afghan Hounds and Eurasiers.

Interestingly, the Lh3 variant, a 16 base pair deletion, encompasses the Lh4 variant (GG insertion). The presence of one or two copies of Lh3 influences the outcome at the Lh4 locus. When two copies of Lh3 are present, there will be no reportable result for the FGF5_Lh4 locus. With one copy of Lh3, Lh4 can have either one copy of the variant allele or the normal allele. The overall FGF5 result remains unaffected by this.

Likely long coat (LhLh)

Test Date: December 31st, 2024

embk.me/kallie231

RESULT

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Shedding (MC5R)

Dogs with at least one copy of the ancestral **C** allele, like many Labradors and German Shepherd Dogs, are heavy or seasonal shedders, while those with two copies of the **T** allele, including many Boxers, Shih Tzus and Chihuahuas, tend to be lighter shedders. Dogs with furnished/wire-haired coats caused by RSPO2 (the furnishings gene) tend to be low shedders regardless of their genotype at this gene.

Likely heavy/seasonal shedding (CC)

Coat Texture (KRT71)

Dogs with a long coat and at least one copy of the **T** allele have a wavy or curly coat characteristic of Poodles and Bichon Frises. Dogs with two copies of the ancestral **C** allele are likely to have a straight coat, but there are other factors that can cause a curly coat, for example if they at least one **F** allele for the Furnishings (RSPO2) gene then they are likely to have a curly coat. Dogs with short coats may carry one or two copies of the **T** allele but still have straight coats.

Hairlessness (FOXI3)

A duplication in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth
 shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and
 Chinese Crested (other hairless breeds have different mutations). Dogs with the NDup genotype are likely
 to be hairless while dogs with the NN genotype are likely to have a normal coat. The DupDup genotype has
 never been observed, suggesting that dogs with that genotype cannot survive to birth. Please note that
 this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Hairlessness (SGK3)

Hairlessness in the American Hairless Terrier arises from a mutation in the SGK3 gene. Dogs with the **DD** result are likely to be hairless. Dogs with the **ND** genotype will have a normal coat, but can pass the **D** variant on to their offspring.

Very unlikely to be hairless (NN)

DNA Test Report

Test Date: December 31st, 2024

embk.me/kallie231

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Oculocutaneous Albinism Type 2 (SLC45A2)

Dogs with two copies **DD** of this deletion in the SLC45A2 gene have oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion **ND** will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

DNA Test Report

Test Date: December 31st, 2024

embk.me/kallie231

Likely medium or long

muzzle (CC)

TRAITS: OTHER BODY FEATURES

TRAIT

Muzzle Length (BMP3)

Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral **C** allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived **A** allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science.

Tail Length (T)

Whereas most dogs have two **C** alleles and a long tail, dogs with one **G** allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with the **GG** genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail.

Hind Dewclaws (LMBR1)

Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with at least one copy of the **T** allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some **CC** or **TC** dogs will have hind dewclaws.

Unlikely to have hind dew claws (CC)

Likely normal-length

tail (CC)

RESULT

DNA Test Report

Blue Eye Color (ALX4)

Test Date: December 31st, 2024

embk.me/kallie231

RESULT

embark

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT

Chondrodysplasia (Chr. 18 FGF4 Retrogene)

Dogs with one or two copies of the I allele will exhibit a short-legged trait known as chondrodysplasia (CDPA). CDPA is a breed-defining characteristic of many breeds exhibiting the "short-legged, longbodied" appearance known as disproportionate dwarfism, including the corgi, dachshund and basset hound. The impact of the I allele on leg length is additive. Therefore, dogs with the II result display the largest reduction in leg length. Dogs with the **NI** genotype will have an intermediate leg length, while dogs with the **NN** result will not exhibit leg shortening due to this variant. Breeds that display disproportionate dwarfism also frequently inherit a genetic variant known as the chondrodystrophy (CDDY) variant. The CDDY variant also shortens legs (in a less significant amount than CDPA) but, secondarily, increases the risk of Type I Intervertebral Disc Disease (IVDD). Test results for CDDY are listed in this dog's health testing results under "Intervertebral Disc Disease (Type I)". In contrast, the CDPA variant has NOT been shown to increase the risk of IVDD.

Not indicative of chondrodysplasia (normal leg length) (NN)

Less likely to have blue

eyes (NN)

Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the duplication (**Dup**) are more likely to have at least one blue eye. Some dogs with the duplication may have only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. **NN** dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like

Back Muscling & Bulk, Large Breed (ACSL4)

The **T** allele is associated with heavy muscling along the back and trunk in characteristically "bulky" largebreed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The "bulky" **T** allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral **C** allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.

Likely normal muscling (CC)

"BABY D	OG "
---------	-------------

DNA Test Report	Test Date: December 31st, 2024	embk.me/kallie231
TRAITS: BODY SIZE		
TRAIT		RESULT
Body Size (IGF1)		Larger (NN)
The I allele is associated with smaller body size.		
Body Size (IGFR1)		Larger (GG)
The A allele is associated with smaller body size		
Body Size (STC2)		Smaller (AA)
The A allele is associated with smaller body size		
Body Size (GHR - E191K)		Smaller (AA)
The A allele is associated with smaller body size		
Body Size (GHR - P177L)		Larger (CC)
The T allele is associated with smaller body size		

DNA Test Report

Test Date: December 31st, 2024

embk.me/kallie231

embark

TRAITS: PERFORMANCE

measure this result using a linkage test.

TRAIT	RESULT
Altitude Adaptation (EPAS1)	
This mutation causes dogs to be especially tolerant of low oxygen environments (hypoxia), such as those found at high elevations. Dogs with at least one A allele are less susceptible to "altitude sickness." This mutation was originally identified in breeds from high altitude areas such as the Tibetan Mastiff.	Normal altitude tolerance (GG)
Appetite (POMC)	
This mutation in the POMC gene is found primarily in Labrador and Flat Coated Retrievers. Compared to dogs with no copies of the mutation (NN), dogs with one (ND) or two (DD) copies of the mutation are more likely to have high food motivation, which can cause them to eat excessively, have higher body fat percentage, and be more prone to obesity. Read more about the genetics of POMC, and learn how you can	Normal food motivation (NN)

contribute to research, in our blog post (https://embarkvet.com/resources/blog/pomc-dogs/). We

DNA Test Report

Test Date: December 31st, 2024

embk.me/kallie231

HEALTH REPORT

How to interpret Baby Dog's genetic health results:

If Baby Dog inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Baby Dog for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

Summary

Of the 274 genetic health risks we analyzed, we found 1 result that you should learn about.

Notable results (1)

ALT Activity

Clear results

Breed-relevant (10)

Other (262)

Test Date: December 31st, 2024

embk.me/kallie231

embark

BREED-RELEVANT RESULTS

Research studies indicate that these results are more relevant to dogs like Baby Dog, and may influence her chances of developing certain health conditions.

Cobalamin Malabsorption (CUBN Exon 53, Border Collie Variant)	Clear
Collie Eye Anomaly (NHEJ1)	Clear
Goniodysgenesis and Glaucoma, Pectinate Ligament Dysplasia, PLD (OLFM3)	Clear
Multiple Drug Sensitivity (ABCB1)	Clear
Myotonia Congenita (CLCN1 Exon 23, Australian Cattle Dog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 SNP, Border Collie Variant)	Clear
Primary Lens Luxation (ADAMTS17)	Clear
Raine Syndrome (FAM20C)	Clear
Sensory Neuropathy (FAM134B, Border Collie Variant)	Clear
Trapped Neutrophil Syndrome, TNS (VPS13B)	Clear

DNA Test Report

Test Date: December 31st, 2024

embk.me/kallie231

OTHER RESULTS

Research has not yet linked these conditions to dogs with similar breeds to Baby Dog. Review any increased risk or notable results to understand her potential risk and recommendations.

ALT Activity (GPT)	Notable
2-DHA Kidney & Bladder Stones (APRT)	Clear
Acral Mutilation Syndrome (GDNF-AS, Spaniel and Pointer Variant)	Clear
Alaskan Husky Encephalopathy (SLC19A3)	Clear
Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP)	Clear
Alexander Disease (GFAP)	Clear
Anhidrotic Ectodermal Dysplasia (EDA Intron 8)	Clear
Autosomal Dominant Progressive Retinal Atrophy (RHO)	Clear
Bald Thigh Syndrome (IGFBP5)	Clear
Bernard-Soulier Syndrome, BSS (GP9, Cocker Spaniel Variant)	Clear
Bully Whippet Syndrome (MSTN)	Clear
Canine Elliptocytosis (SPTB Exon 30)	Clear
Canine Fucosidosis (FUCA1)	Clear
Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant)	Clear
Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)	Clear
Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2)	Clear
Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant)	Clear
Canine Multifocal Retinopathy, cmr3 (BEST1 Exon 10 Deletion, Finnish and Swedish Lapphund, Lapponian Herder Variant)	Clear

DNA Test Report	Test Date: December 31st, 2024	embk.me/kallie231
OTHER RESULTS		
Canine Multiple System Degener	ation (SERAC1 Exon 4, Chinese Crested Variant)	Clear
Canine Multiple System Degener	ation (SERAC1 Exon 15, Kerry Blue Terrier Variant)	Clear
Cardiomyopathy and Juvenile Mo	ortality (YARS2)	Clear
Centronuclear Myopathy, CNM (P	PTPLA)	Clear
🔗 Cerebellar Hypoplasia (VLDLR, Eu	urasier Variant)	Clear
🔗 Chondrodysplasia (ITGA10, Norwe	egian Elkhound and Karelian Bear Dog Variant)	Clear
Cleft Lip and/or Cleft Palate (ADA	MTS20, Nova Scotia Duck Tolling Retriever Variant)	Clear
Cleft Palate, CP1 (DLX6 intron 2, N	Nova Scotia Duck Tolling Retriever Variant)	Clear
Obalamin Malabsorption (CUBN	Exon 8, Beagle Variant)	Clear
Complement 3 Deficiency, C3 Def	ficiency (C3)	Clear
Ocongenital Cornification Disorder	r (NSDHL, Chihuahua Variant)	Clear
Ocongenital Dyserythropoietic And	emia and Polymyopathy (EHPB1L1, Labrador Retriever Variant)	Clear
Ongenital Hypothyroidism (TPO,	, Rat, Toy, Hairless Terrier Variant)	Clear
Ocongenital Hypothyroidism (TPO,	, Tenterfield Terrier Variant)	Clear
Congenital Hypothyroidism with 0	Goiter (TPO Intron 13, French Bulldog Variant)	Clear
Ongenital Hypothyroidism with 0	Goiter (SLC5A5, Shih Tzu Variant)	Clear
Congenital Macrothrombocytope	nia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant)	Clear
Congenital Muscular Dystrophy (LAMA2, Italian Greyhound)	Clear

DNA Test Report	Test Date: December 31st, 2024	embk.me/kallie231
OTHER RESULTS		
Ocongenital Myasthenic Synd	frome, CMS (COLQ, Labrador Retriever Variant)	Clear
Ocongenital Myasthenic Synd	frome, CMS (COLQ, Golden Retriever Variant)	Clear
Ocongenital Myasthenic Synd	Irome, CMS (CHAT, Old Danish Pointing Dog Variant)	Clear
🔗 Congenital Myasthenic Synd	Irome, CMS (CHRNE, Jack Russell Terrier Variant)	Clear
Ongenital Stationary Night	Blindness (LRIT3, Beagle Variant)	Clear
Ongenital Stationary Night	Blindness (RPE65, Briard Variant)	Clear
Ocpper Toxicosis (Accumula	ting) (ATP7B)	Clear
Ocpper Toxicosis (Attenuatir	ng) (ATP7A, Labrador Retriever)	Clear
Ocpper Toxicosis (Attenuatir	ng) (RETN, Labrador Retriever)	Clear
🔗 Craniomandibular Osteopath	ny, CMO (SLC37A2)	Clear
🔗 Craniomandibular Osteopath	ny, CMO (SLC37A2 Intron 16, Basset Hound Variant)	Clear
🚫 Cystinuria Type I-A (SLC3A1,	Newfoundland Variant)	Clear
🔗 Cystinuria Type II-A (SLC3A1	, Australian Cattle Dog Variant)	Clear
🚫 Cystinuria Type II-B (SLC7A9), Miniature Pinscher Variant)	Clear
🔗 Darier Disease (ATP2A2, Irish	n Terrier Variant)	Clear
🔗 Day Blindness (CNGB3 Delet	ion, Alaskan Malamute Variant)	Clear
🔗 Day Blindness (CNGA3 Exon	7, German Shepherd Variant)	Clear
⊘ Day Blindness (CNGA3 Exon	7, Labrador Retriever Variant)	Clear

"BABY DOG"

DNA Test Report	Test Date: December 31st, 2024	embk.me/kallie231
OTHER RESULTS		
Day Blindness (CNGB3 Exon 6, German	Shorthaired Pointer Variant)	Clear
Ø Deafness and Vestibular Syndrome of D	obermans, DVDob, DINGS (MYO7A)	Clear
O Degenerative Myelopathy, DM (SOD1A)		Clear
Oemyelinating Polyneuropathy (SBF2/N	ITRM13)	Clear
Oental-Skeletal-Retinal Anomaly (MIA3,	Cane Corso Variant)	Clear
O Diffuse Cystic Renal Dysplasia and Hepa	atic Fibrosis (INPP5E Intron 9, Norwich Terrier Variant)	Clear
Dilated Cardiomyopathy, DCM (RBM20,	Schnauzer Variant)	Clear
Dilated Cardiomyopathy, DCM1 (PDK4, D	oberman Pinscher Variant 1)	Clear
Dilated Cardiomyopathy, DCM2 (TTN, Do	berman Pinscher Variant 2)	Clear
Disproportionate Dwarfism (PRKG2, Dog	o Argentino Variant)	Clear
Ory Eye Curly Coat Syndrome (FAM83H	Exon 5)	Clear
Oystrophic Epidermolysis Bullosa (COL7	A1, Central Asian Shepherd Dog Variant)	Clear
Oystrophic Epidermolysis Bullosa (COL7	'A1, Golden Retriever Variant)	Clear
S Early Bilateral Deafness (LOXHD1 Exon 3	8, Rottweiler Variant)	Clear
Sarly Onset Adult Deafness, EOAD (EPS	BL2 Deletion, Rhodesian Ridgeback Variant)	Clear
🔗 Early Onset Cerebellar Ataxia (SEL1L, Fi	nnish Hound Variant)	Clear
Ehlers Danlos (ADAMTS2, Doberman Pir	nscher Variant)	Clear
Ehlers-Danlos Syndrome (EDS) (COL5A	I, Labrador Retriever Variant)	Clear

"	B	Α	BJ)()(G"	

DNA Test Report	Test Date: December 31st, 2024	embk.me/kallie231
OTHER RESULTS		
🔗 Enamel Hypoplasia (ENAM Deletion, Italia	n Greyhound Variant)	Clear
🔗 Enamel Hypoplasia (ENAM SNP, Parson Ru	ussell Terrier Variant)	Clear
Sepisodic Falling Syndrome (BCAN)		Clear
Exercise-Induced Collapse, EIC (DNM1)		Clear
Sactor VII Deficiency (F7 Exon 5)		Clear
Sactor XI Deficiency (F11 Exon 7, Kerry Blue	e Terrier Variant)	Clear
Samilial Nephropathy (COL4A4 Exon 3, Co	cker Spaniel Variant)	Clear
Samilial Nephropathy (COL4A4 Exon 30, E	nglish Springer Spaniel Variant)	Clear
🧭 Fanconi Syndrome (FAN1, Basenji Variant)		Clear
Setal-Onset Neonatal Neuroaxonal Dystro	phy (MFN2, Giant Schnauzer Variant)	Clear
Glanzmann's Thrombasthenia Type I (ITGA	A2B Exon 13, Great Pyrenees Variant)	Clear
Glanzmann's Thrombasthenia Type I (ITGA	A2B Exon 12, Otterhound Variant)	Clear
Globoid Cell Leukodystrophy, Krabbe dise	ase (GALC Exon 5, Terrier Variant)	Clear
Glycogen Storage Disease Type IA, Von Gi	erke Disease, GSD IA (G6PC1, German Pinscher Variant)	Clear
Glycogen Storage Disease Type IA, Von Gi	erke Disease, GSD IA (G6PC, Maltese Variant)	Clear
Glycogen Storage Disease Type IIIA, GSD	IIIA (AGL, Curly Coated Retriever Variant)	Clear
Glycogen storage disease Type VII, Phosp and English Springer Spaniel Variant)	hofructokinase Deficiency, PFK Deficiency (PFKM, Whippet	Clear
Glycogen storage disease Type VII, Phosp Wachtelhund Variant)	hofructokinase Deficiency, PFK Deficiency (PFKM,	Clear

"	B	4 B'	YD	00	G"

DNA Test Report	Test Date: December 31st, 2024	embk.me/kallie231
OTHER RESULTS		
GM1 Gangliosidosis (GLB1 Exon 2, Por	tuguese Water Dog Variant)	Clear
⊘ GM1 Gangliosidosis (GLB1 Exon 15, Sh	iba Inu Variant)	Clear
GM1 Gangliosidosis (GLB1 Exon 15, Ala	askan Husky Variant)	Clear
🔗 GM2 Gangliosidosis (HEXA, Japanese	Chin Variant)	Clear
GM2 Gangliosidosis (HEXB, Poodle Va	riant)	Clear
Golden Retriever Progressive Retinal	Atrophy 1, GR-PRA1 (SLC4A3)	Clear
Golden Retriever Progressive Retinal	Atrophy 2, GR-PRA2 (TTC8)	Clear
🔗 Hemophilia A (F8 Exon 11, German She	epherd Variant 1)	Clear
Hemophilia A (F8 Exon 1, German She	pherd Variant 2)	Clear
Hemophilia A (F8 Exon 10, Boxer Varia	nt)	Clear
Hemophilia B (F9 Exon 7, Terrier Varian	nt)	Clear
🔗 Hemophilia B (F9 Exon 7, Rhodesian R	ridgeback Variant)	Clear
🔗 Hereditary Ataxia (PNPLA8, Australian	Shepherd Variant)	Clear
lereditary Ataxia, Cerebellar Degener	ation (RAB24, Old English Sheepdog and Gordon Setter Variant)	Clear
Hereditary Cataracts (HSF4 Exon 9, Au	ustralian Shepherd Variant)	Clear
Hereditary Cataracts (FYCO1, Wirehair	red Pointing Griffon Variant)	Clear
Itereditary Cerebellar Ataxia (SELENO	P, Belgian Shepherd Variant)	Clear
lereditary Footpad Hyperkeratosis (F	AM83G, Terrier and Kromfohrlander Variant)	Clear

DNA Test Report	Test Date: December 31st, 2024	embk.me/kallie231
OTHER RESULTS		
Hereditary Footpad Hyperkeratosis (I	DSG1, Rottweiler Variant)	Clear
Hereditary Nasal Parakeratosis (SUV	39H2 Intron 4, Greyhound Variant)	Clear
Hereditary Nasal Parakeratosis, HNP	((SUV39H2)	Clear
Hereditary Vitamin D-Resistant Ricke	ets (VDR)	Clear
🔗 Hypocatalasia, Acatalasemia (CAT)		Clear
Hypomyelination and Tremors (FNIP2	2, Weimaraner Variant)	Clear
Hypophosphatasia (ALPL Exon 9, Kar	elian Bear Dog Variant)	Clear
🚫 Ichthyosis (NIPAL4, American Bulldog	g Variant)	Clear
Ichthyosis (ASPRV1 Exon 2, German S	Shepherd Variant)	Clear
O Ichthyosis (SLC27A4, Great Dane Var	iant)	Clear
O Ichthyosis, Epidermolytic Hyperkerat	osis (KRT10, Terrier Variant)	Clear
C Ichthyosis, ICH1 (PNPLA1, Golden Ref	triever Variant)	Clear
O Ichthyosis, ICH2 (ABHD5, Golden Ret	riever Variant)	Clear
Inflammatory Myopathy (SLC25A12)		Clear
Inherited Myopathy of Great Danes (I	BIN1)	Clear
Inherited Selected Cobalamin Malaba	sorption with Proteinuria (CUBN, Komondor Variant)	Clear
Intervertebral Disc Disease (Type I) (FGF4 retrogene - CFA12)	Clear
O Intestinal Lipid Malabsorption (ACSL	5, Australian Kelpie)	Clear

,,,	B	AB	Y	D	0	G"

DNA Test Report	Test Date: December 31st, 2024	embk.me/kallie231
OTHER RESULTS		
🧭 Junctional Epidermolysis Bullosa (LAN	1A3 Exon 66, Australian Cattle Dog Variant)	Clear
🧭 Junctional Epidermolysis Bullosa (LAN	1B3 Exon 11, Australian Shepherd Variant)	Clear
Juvenile Epilepsy (LGI2)		Clear
Juvenile Laryngeal Paralysis and Polyn	neuropathy (RAB3GAP1, Rottweiler Variant)	Clear
Juvenile Myoclonic Epilepsy (DIRAS1)		Clear
🔗 L-2-Hydroxyglutaricaciduria, L2HGA (La	2HGDH, Staffordshire Bull Terrier Variant)	Clear
Lagotto Storage Disease (ATG4D)		Clear
🔗 Laryngeal Paralysis (RAPGEF6, Miniatu	ure Bull Terrier Variant)	Clear
 Laryngeal Paralysis and Polyneuropath variant) 	ny (CNTNAP1, Leonberger, Saint Bernard, and Labrador Retriever	Clear
⊘ Late Onset Spinocerebellar Ataxia (CA	PN1)	Clear
Late-Onset Neuronal Ceroid Lipofuscin	nosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant)	Clear
🔗 Leonberger Polyneuropathy 1 (LPN1, A	RHGEF10)	Clear
Leonberger Polyneuropathy 2 (GJA9)		Clear
Lethal Acrodermatitis, LAD (MKLN1)		Clear
Leukodystrophy (TSEN54 Exon 5, Stan	dard Schnauzer Variant)	Clear
🧭 Ligneous Membranitis, LM (PLG)		Clear
SGCI Limb Girdle Muscular Dystrophy (SGCI	D, Boston Terrier Variant)	Clear
⊘ Limb-Girdle Muscular Dystrophy 2D (S	GCA Exon 3, Miniature Dachshund Variant)	Clear

DNA Test Report	Test Date: December 31st, 2024	embk.me/kallie231
OTHER RESULTS		
Long QT Syndrome (KCNQ1)		Clear
O Lundehund Syndrome (LEPF	REL1)	Clear
Macular Corneal Dystrophy,	MCD (CHST6)	Clear
🧭 Malignant Hyperthermia (RY	(R1)	Clear
🧭 May-Hegglin Anomaly (MYH	9)	Clear
Medium-Chain Acyl-CoA De Variant)	hydrogenase Deficiency, MCADD (ACADM, Cavalier King Charles Spaniel	Clear
Methemoglobinemia (CYB5)	R3, Pit Bull Terrier Variant)	Clear
Methemoglobinemia (CYB5)	R3)	Clear
O Microphthalmia (RBP4 Exon	2, Soft Coated Wheaten Terrier Variant)	Clear
Mucopolysaccharidosis IIIB,	, Sanfilippo Syndrome Type B, MPS IIIB (NAGLU, Schipperke Variant)	Clear
 Mucopolysaccharidosis Type Variant) 	e IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, Dachshund	Clear
 Mucopolysaccharidosis Type Huntaway Variant) 	e IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, New Zealand	Clear
 Mucopolysaccharidosis Type Variant) 	e VI, Maroteaux-Lamy Syndrome, MPS VI (ARSB Exon 5, Miniature Pinsche	er Clear
Mucopolysaccharidosis Type	e VII, Sly Syndrome, MPS VII (GUSB Exon 3, German Shepherd Variant)	Clear
Mucopolysaccharidosis Type	e VII, Sly Syndrome, MPS VII (GUSB Exon 5, Terrier Brasileiro Variant)	Clear
Muscular Dystrophy (DMD, C	Cavalier King Charles Spaniel Variant 1)	Clear
Muscular Dystrophy (DMD, G	Golden Retriever Variant)	Clear
🔗 Muscular Dystrophy-Dystrog	glycanopathy (LARGE1, Labrador Retriever Variant)	Clear

DNA Test Report	Test Date: December 31st, 2024	embk.me/kallie231
OTHER RESULTS		
Ø Musladin-Lueke Syndrome,	, MLS (ADAMTSL2)	Clear
🧭 Myasthenia Gravis-Like Syr	ndrome (CHRNE, Heideterrier Variant)	Clear
🧭 Myotonia Congenita (CLCN	1 Exon 19, Labrador Retriever Variant)	Clear
🔗 Myotonia Congenita (CLCN	1 Exon 7, Miniature Schnauzer Variant)	Clear
Narcolepsy (HCRTR2 Exon 7	1, Dachshund Variant)	Clear
Narcolepsy (HCRTR2 Intron	4, Doberman Pinscher Variant)	Clear
Narcolepsy (HCRTR2 Intron	6, Labrador Retriever Variant)	Clear
Nemaline Myopathy (NEB, A	American Bulldog Variant)	Clear
🔗 Neonatal Cerebellar Cortica	al Degeneration (SPTBN2, Beagle Variant)	Clear
🔗 Neonatal Encephalopathy v	with Seizures, NEWS (ATF2)	Clear
🔗 Neonatal Interstitial Lung D	Disease (LAMP3)	Clear
🔗 Neuroaxonal Dystrophy, NAI	D (VPS11, Rottweiler Variant)	Clear
Neuroaxonal Dystrophy, NA	D (TECPR2, Spanish Water Dog Variant)	Clear
Neuronal Ceroid Lipofuscin	osis 1, NCL 1 (PPT1 Exon 8, Dachshund Variant 1)	Clear
O Neuronal Ceroid Lipofuscin	osis 10, NCL 10 (CTSD Exon 5, American Bulldog Variant)	Clear
🔗 Neuronal Ceroid Lipofuscin	osis 2, NCL 2 (TPP1 Exon 4, Dachshund Variant 2)	Clear
Neuronal Ceroid Lipofuscin	osis 5, NCL 5 (CLN5 Exon 4 Deletion, Golden Retriever Variant)	Clear
🔗 Neuronal Ceroid Lipofuscin	osis 6, NCL 6 (CLN6 Exon 7, Australian Shepherd Variant)	Clear

DNA Test Report	Test Date: December 31st, 2024	embk.me/kallie231
OTHER RESULTS		
Neuronal Ceroid Lipofuscinosi	is 7, NCL 7 (MFSD8, Chihuahua and Chinese Crested Variant)	Clear
O Neuronal Ceroid Lipofuscinosi	is 8, NCL 8 (CLN8, Australian Shepherd Variant)	Clear
O Neuronal Ceroid Lipofuscinosi	is 8, NCL 8 (CLN8 Exon 2, English Setter Variant)	Clear
O Neuronal Ceroid Lipofuscinosi	is 8, NCL 8 (CLN8 Insertion, Saluki Variant)	Clear
 Neuronal Ceroid Lipofuscinosi Variant) 	is, Cerebellar Ataxia, NCL4A (ARSG Exon 2, American Staffordshire Terrier	Clear
Oculocutaneous Albinism, OCA	A (SLC45A2 Exon 6, Bullmastiff Variant)	Clear
Oculocutaneous Albinism, OCA	A (SLC45A2, Small Breed Variant)	Clear
Oculoskeletal Dysplasia 2 (CO	L9A2, Samoyed Variant)	Clear
Osteochondrodysplasia (SLC1)	3A1, Poodle Variant)	Clear
Osteogenesis Imperfecta (COI	L1A2, Beagle Variant)	Clear
Osteogenesis Imperfecta (SEF	RPINH1, Dachshund Variant)	Clear
Osteogenesis Imperfecta (COI	L1A1, Golden Retriever Variant)	Clear
P2Y12 Receptor Platelet Disord	der (P2Y12)	Clear
🤗 Pachyonychia Congenita (KRT	16, Dogue de Bordeaux Variant)	Clear
🤗 Paroxysmal Dyskinesia, PxD (P	PIGN)	Clear
Persistent Mullerian Duct Sync	drome, PMDS (AMHR2)	Clear
Pituitary Dwarfism (POU1F1 Int	tron 4, Karelian Bear Dog Variant)	Clear
Platelet Factor X Receptor Def	ficiency, Scott Syndrome (TMEM16F)	Clear

"	B	AB	Y	D	0	G"

DNA Test Report	Test Date: December 31st, 2024	embk.me/kallie231
OTHER RESULTS		
Polycystic Kidney Disease, F	PKD (PKD1)	Clear
Pompe's Disease (GAA, Finn	nish and Swedish Lapphund, Lapponian Herder Variant)	Clear
Prekallikrein Deficiency (KL	KB1 Exon 8)	Clear
Primary Ciliary Dyskinesia, P	PCD (NME5, Alaskan Malamute Variant)	Clear
Primary Ciliary Dyskinesia, P	PCD (STK36, Australian Shepherd Variant)	Clear
Primary Ciliary Dyskinesia, P	PCD (CCDC39 Exon 3, Old English Sheepdog Variant)	Clear
Primary Hyperoxaluria (AGX)	г)	Clear
Primary Open Angle Glaucor	ma (ADAMTS17 Exon 11, Basset Fauve de Bretagne Variant)	Clear
Primary Open Angle Glaucor	ma (ADAMTS10 Exon 17, Beagle Variant)	Clear
Primary Open Angle Glaucor	ma (ADAMTS10 Exon 9, Norwegian Elkhound Variant)	Clear
 Primary Open Angle Glaucor Variant) 	ma and Primary Lens Luxation (ADAMTS17 Exon 2, Chinese Shar-Pei	Clear
Progressive Retinal Atrophy	r (SAG)	Clear
Progressive Retinal Atrophy	(IFT122 Exon 26, Lapponian Herder Variant)	Clear
Progressive Retinal Atrophy	5, PRA5 (NECAP1 Exon 6, Giant Schnauzer Variant)	Clear
Progressive Retinal Atrophy	, Bardet-Biedl Syndrome (BBS2 Exon 11, Shetland Sheepdog Variant)	Clear
Progressive Retinal Atrophy	r, CNGA (CNGA1 Exon 9)	Clear
Progressive Retinal Atrophy	v, crd1 (PDE6B, American Staffordshire Terrier Variant)	Clear
Progressive Retinal Atrophy.	v, crd4/cord1 (RPGRIP1)	Clear

DNA Test Report	Test Date: December 31st, 2024	embk.me/kallie231
OTHER RESULTS		
Progressive Retinal Atrophy	y, PRA1 (CNGB1)	Clear
Progressive Retinal Atrophy	y, PRA3 (FAM161A)	Clear
Progressive Retinal Atrophy	y, prcd (PRCD Exon 1)	Clear
Progressive Retinal Atrophy	y, rcd1 (PDE6B Exon 21, Irish Setter Variant)	Clear
Progressive Retinal Atrophy	y, rcd3 (PDE6A)	Clear
Proportionate Dwarfism (GF	H1 Exon 5, Chihuahua Variant)	Clear
Protein Losing Nephropath	y, PLN (NPHS1)	Clear
Pyruvate Dehydrogenase D	eficiency (PDP1, Spaniel Variant)	Clear
Pyruvate Kinase Deficiency	y (PKLR Exon 5, Basenji Variant)	Clear
Pyruvate Kinase Deficiency	(PKLR Exon 7, Beagle Variant)	Clear
Pyruvate Kinase Deficiency	y (PKLR Exon 10, Terrier Variant)	Clear
Pyruvate Kinase Deficiency	(PKLR Exon 7, Labrador Retriever Variant)	Clear
Pyruvate Kinase Deficiency	(PKLR Exon 7, Pug Variant)	Clear
Recurrent Inflammatory Pul	Imonary Disease, RIPD (AKNA, Rough Collie Variant)	Clear
Renal Cystadenocarcinoma	a and Nodular Dermatofibrosis (FLCN Exon 7)	Clear
🔗 Retina Dysplasia and/or Op	tic Nerve Hypoplasia (SIX6 Exon 1, Golden Retriever Variant)	Clear
Severe Combined Immunoo	deficiency, SCID (PRKDC, Terrier Variant)	Clear
Severe Combined Immunoo	deficiency, SCID (RAG1, Wetterhoun Variant)	Clear

"BABY	DOG"
KALLIE	

DNA Test Report	Test Date: December 31st, 2024	embk.me/kallie231
OTHER RESULTS		
Shaking Puppy Syndrome (P	LP1, English Springer Spaniel Variant)	Clear
🔗 Shar-Pei Autoinflammatory D	Disease, SPAID, Shar-Pei Fever (MTBP)	Clear
Skeletal Dysplasia 2, SD2 (Co	OL11A2, Labrador Retriever Variant)	Clear
Skin Fragility Syndrome (PKF	P1, Chesapeake Bay Retriever Variant)	Clear
Spinocerebellar Ataxia (SCN	8A, Alpine Dachsbracke Variant)	Clear
Spinocerebellar Ataxia with I	Myokymia and/or Seizures (KCNJ10)	Clear
Spongy Degeneration with C	Cerebellar Ataxia 1 (KCNJ10)	Clear
Spongy Degeneration with C	Cerebellar Ataxia 2 (ATP1B2)	Clear
Stargardt Disease (ABCA4 Ex	xon 28, Labrador Retriever Variant)	Clear
Succinic Semialdehyde Dehy	ydrogenase Deficiency (ALDH5A1 Exon 7, Saluki Variant)	Clear
O Thrombopathia (RASGRP1 Ex	kon 5, American Eskimo Dog Variant)	Clear
O Thrombopathia (RASGRP1 Ex	kon 5, Basset Hound Variant)	Clear
O Thrombopathia (RASGRP1 Ex	kon 8, Landseer Variant)	Clear
🔗 Ullrich-like Congenital Musc	ular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant)	Clear
O Ullrich-like Congenital Musc	ular Dystrophy (COL6A1 Exon 3, Landseer Variant)	Clear
O Unilateral Deafness and Vest	tibular Syndrome (PTPRQ Exon 39, Doberman Pinscher)	Clear
⊘ Urate Kidney & Bladder Ston	es (SLC2A9)	Clear
⊘ Von Willebrand Disease Type	e I, Type I vWD (VWF)	Clear

"BABY	DOG"
KALLIE	

DNA Test Report	Test Date: December 31st, 2024	embk.me/kallie231
OTHER RESULTS		
⊘ Von Willebrand Disease Type II, Type II vW	D (VWF, Pointer Variant)	Clear
🔗 Von Willebrand Disease Type III, Type III vV	VD (VWF Exon 4, Terrier Variant)	Clear
Von Willebrand Disease Type III, Type III vV	VD (VWF Intron 16, Nederlandse Kooikerhondje Variant)	Clear
🔗 Von Willebrand Disease Type III, Type III vV	VD (VWF Exon 7, Shetland Sheepdog Variant)	Clear
⊘ X-Linked Hereditary Nephropathy, XLHN (C	OL4A5 Exon 35, Samoyed Variant 2)	Clear
🔗 X-Linked Myotubular Myopathy (MTM1, La	brador Retriever Variant)	Clear
⊘ X-Linked Progressive Retinal Atrophy 1, XL	-PRA1 (RPGR)	Clear
⊘ X-linked Severe Combined Immunodeficie	ncy, X-SCID (IL2RG Exon 1, Basset Hound Variant)	Clear
⊘ X-linked Severe Combined Immunodeficie	ncy, X-SCID (IL2RG, Corgi Variant)	Clear
⊘ Xanthine Urolithiasis (XDH, Mixed Breed V	ariant)	Clear
🧭 β-Mannosidosis (MANBA Exon 16, Mixed-I	Breed Variant)	Clear
Mast Cell Tumor		No result

DNA Test Report

Test Date: December 31st, 2024

embk.me/kallie231

embark

HEALTH REPORT

On the second second

ALT Activity

Kallie inherited both copies of the variant we tested for Alanine Aminotransferase Activity

Why is this important to your vet?

Baby Dog has two copies of a variant in the GPT gene and is likely to have a lower than average baseline ALT activity. ALT is a commonly used measure of liver health on routine veterinary blood chemistry panels. As such, your veterinarian may want to watch for changes in Baby Dog's ALT activity above their current, healthy, ALT activity. As an increase above Baby Dog's baseline ALT activity could be evidence of liver damage, even if it is within normal limits by standard ALT reference ranges.

What is Alanine Aminotransferase Activity?

Alanine aminotransferase (ALT) is a clinical tool that can be used by veterinarians to better monitor liver health. This result is not associated with liver disease. ALT is one of several values veterinarians measure on routine blood work to evaluate the liver. It is a naturally occurring enzyme located in liver cells that helps break down protein. When the liver is damaged or inflamed, ALT is released into the bloodstream.

How vets diagnose this condition

Genetic testing is the only way to provide your veterinarian with this clinical tool.

How this condition is treated

Veterinarians may recommend blood work to establish a baseline ALT value for healthy dogs with one or two copies of this variant.

"BABY DOG"

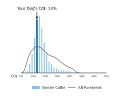
KALLIE

DNA Test Report

Test Date: December 31st, 2024

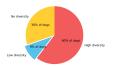
embk.me/kallie231

RESULT


INBREEDING AND DIVERSITY

CATEGORY

Coefficient Of Inbreeding


Our genetic COI measures the proportion of your dog's genome where the genes on the mother's side are identical by descent to those on the father's side.

13%

Low Diversity

How common is this amount of diversity in purebreds:

High Diversity

How common is this amount of diversity in purebreds:

MHC Class II - DLA DRB1

A Dog Leukocyte Antigen (DLA) gene, DRB1 encodes a major histocompatibility complex (MHC) protein involved in the immune response. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Addison's disease (hypoadrenocorticism) in certain dog breeds, but these findings have yet to be scientifically validated.

MHC Class II - DLA DQA1 and DQB1

DQA1 and DQB1 are two tightly linked DLA genes that code for MHC proteins involved in the immune response. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.